

风洞试验模型技术新发展

New Development of Model Techniques for Wind Tunnel Test

战培国/中国空气动力研究与发展中心 赵昕/绵阳职业技术学院

摘 要:风洞模型试验是航空航天飞行器研制的重要环节之一。试验模型的设计制造关系到风洞试验的数据质 量、效率、周期和成本。本文归纳了近年来国外风洞模型技术的最新发展,分析了快速成型技术在风洞试验模 型制造中的发展和应用,阐述了欧、美遥控风洞模型技术的发展理念、关键技术和应用研究,概述了风洞试验 模型采用的新材料、抑振和变形测量技术。

关键词:风洞模型;模型快速成型;遥控风洞模型 Keywords: wind tunnel model; model rapid prototyping; remotely controlled model

0引言

风洞模型试验是航空航天飞行器 研制过程中了解飞行器性能、降低飞行 器研制风险和成本的重要手段之一。 风洞模型的设计制造直接影响模型的 质量、加工周期和成本,影响风洞试验 的数据质量、效率、周期和成本。众所周 知,风洞试验首先要设计加工试验模 型,传统的跨超声速风洞模型通常采 用全金属材料,通过车、洗、刨、磨、钻或 电加工等工艺制造,低速风洞模型一般 采用非金属(如木材、树脂或复合材料 等)或金属与非金属结合制造。风洞试 验中,模型状态的变化,(如襟、副翼等 角度变化)需要风洞停车,人工拆装;试 验中,风洞模型通常被视为刚性模型, 模型的振动或变形的影响一般被忽略。 随着计算流体力学(CFD)技术和计算 机网络技术的发展,飞行器研制周期缩 短,人力资源和能源成本的提高,使人 们对风洞试验的效率、风洞模型设计制 造考虑更为精细。传统的风洞模型技术 在某些方面已不能满足现代飞行器研 制技术发展的需要,因此,风洞模型技 术已呈现出新的发展态势,以弥补传统 风洞试验模型的不足。

1 模型快速成型技术

现代飞行器设计技术的进步使飞 行器的研制节奏加快,飞行器气动性能 设计中CFD技术应用增多,CFD的模拟 计算结果或某些设计的思想需要得到风 洞试验的验证。为了加快飞行器研制速 度,需要在计算模拟和风洞试验验证之 间建立一种无缝连接,模型快速成型技 术(RP)就是其间的一座桥梁,它能使设 计者的思想或计算模拟的结果迅速以实 物模型在风洞中得到验证。

传统模型制造是从零件毛胚去除 多余部分成型组装而成。模型快速成型 技术则与之相反,是一种用材料逐层或 逐点堆积出模型的制造方法,它采用计 算机辅助设计及制造技术、逆向工程技 术、分层制造技术(SFF)、材料增加成形 (MAP)技术等来制造模型。通俗地说,快 速成形技术就是利用三维计算机辅助设 计(CAD)的数据,通过快速成型机将一 层层的材料堆积成实体原型。

1.1 几种常见的快速成型技术加工方法

1) 立体光固化(SLA)

该方法是目前世界上研究最深入、 技术最成熟、应用最广泛的一种快速成 型方法。SLA技术原理是计算机控制激 光束对光敏树脂为原料的表面进行逐 点扫描,被扫描区域的树脂薄层(约十分 之几毫米)产生光聚合反应而固化,形成 零件的一个薄层。工作台下移一个层厚 的距离,以便在固化好的树脂表面再敷 上一层新的液态树脂,进行下一层的扫 描加工,如此反复,直到整个模型制造 完毕。

2) 熔积成型(FDM)

在熔积成型法(FDM)的过程中, 龙 门架式的机械控制喷头可以在工作台的 两个主要方向移动, 工作台可以根据需 要向上或向下移动。FDM工艺的关键是 保持半流动成型材料刚好在熔点之上 (通常控制在比熔点高1℃左右)。FDM喷 头受CAD分层数据控制使半流动状态的 熔丝材料从喷头中挤压出来, 凝固形成 轮廓形状的薄层, 一层叠一层最后形成 整个零件模型。 3) 选择性激光烧结(SLS)

该法采用CO₂激光器作能源,目前使 用的造型材料多为各种粉末材料。在工 作台上均匀铺上一层很薄的粉末,激光 束在计算机控制下按照零件分层轮廓有 选择性地进行烧结,一层完成后再进行 下一层烧结。全部烧结完后去掉多余的 粉末,再进行打磨、烘干等处理便获得 零件。

4) 叠层制造(LOM)

叠层制造工艺将单面涂有热溶胶 的纸片通过加热辊加热黏接在一起,位 于上方的激光器按照CAD分层模型所获 数据,用激光束将纸切割成所制零件的 内外轮廓,然后新的一层纸再叠加在上 面,通过热压装置和下面已切割层黏合 在一起,激光束再次切判,这样反复逐层 切割/黏合/切割,直到整个零件模型制作 完成。

除上述几种常见快速成型制造技 术外,直接金属加工(DMM)是近年来 快速成型技术的一个新发展,它在直接 用快速成型装置生产高强度部件方面 具有很大的潜力。目前国外已有能够生 产金属部件(不锈钢、铝、钛等)的小型 制造系统。

美国空军实验室飞行器部分别采 用立体光固化和选择性激光烧结技术 加工了无人战斗机X-45A和空中攻击 机(Strike Tanker)风洞试验模型(图1、 图2),并在空军实验室亚声速风洞进行 了试验。

图1 SLA技术加工的 X-45A模型

1.2 快速成型技术应用存在的主要问题

1) 材料问题

快速成型技术中成型材料的成型 性能大多不太理想,快速成型材料的价 格都比较贵,造成生产成本高。

2) 设备价格

快速成型技术是综合计算机、激 光、新材料、CAD/CAM集成等技术而形 成的一种全新的制造技术,设备的价格 较贵。

3)功能单一

快速成型机的成型系统都只能进 行一种工艺成型,而且大多数只能用一 种或少数几种材料成型。

4) 成型精度和质量问题

由于快速成型的成型工艺发展还 不完善,成型零件的精度及表面质量尚 需提高。

5) 软件问题

快速成型软件系统不但是实现离 散/堆积成型的重要环节,对成型速度、 成型精度、零件表面质量等方面都有很 大影响,软件问题是快速成型技术发展 的关键问题。

目前,快速成型研发的重点是快速 成型技术的基本理论、新的快速成型方 法、新材料的开发、模具制作技术、金属 零件的直接制造等。

2 风洞试验模型遥控技术

大型风洞生产型试验需要获取 各种状态下飞行器气动特性,由于飞

图2 SLS技术加工的Striker tanker模型

行器模型各种控制面组合变化多,模 型试验状态变化多,因此风洞模型技 术直接关系到风洞试验的数据质量、 成本和效率。例如,国外某风洞试验研 究表明,采用传统的常规风洞飞机模 型,其人工变换升降舵状态1次,需要 7~10min,这包括风洞停车、模型舵片 调整(1~1.5 min)、状态确认检查、风 洞重新开车到试验状态条件的时间。 如果模型采用遥控电动升降舵,同样 的模型状态变化只需要0.25min。由此 不难看出,在能源、人力资源成本高企 的今天,采用风洞模型遥控技术能够 大大缩短风洞模型占洞试验时间,遥 控定位模型气动力控制面能提高试验 效率,并降低试验成本。

早在20世纪70年代中,美国阿诺德 工程发展中心(AEDC)就在"捕获飞机 试验"技术中采用了模型遥控技术。"捕 获飞机试验"是一种在风洞中直接模拟 飞机机动的试验技术。F-15飞机模型遥 控平尾获得的纵向机动风洞试验数据与 飞行试验数据吻合很好。几十年来,通过 改进测试技术、发展先进控制算法、采用 旋转数字编码器、小型化遥控元件、降低 控制面偏转角漂移等,该技术已不断完 善,被广泛应用于风洞试验。图3给出了 X-38空天飞机采用遥控舵面模型在跨 超风洞中的试验场景。

在欧洲,世界著名的德/荷DNW大

图3 X-38遥控控制面风洞模型

型低速风洞(LLF)能够进行运输机的 多种类型试验,如飞机的操控品质、地 效和发动机喷流效应、声学等试验。在 该风洞中,飞机试验模型一般翼展可达 7m,能够较好地满足运输机外形详细 模拟的需要。由于风洞运行占洞成本高 和模型尺寸大造价成本高,大型风洞试 验模型的设计更需要综合考虑。

为了满足运输机定型生产试验需 要,DNW研究制造了大尺度、多功能、全 遥控运输机风洞试验模型(图4),应用该 模型除完成常规气动力试验外,还完成 了发动机喷流效应试验、推力转向试验、 也效试验、操控品质试验、结冰试验、声 学试验。通过使用多功能、全遥控模型, 减少了所需模型的数量,提高了试验效 率、降低了飞机研制试验成本。

风洞模型遥控关键技术如下:

1) 角度偏转测量

模型各种舵面的角度偏转测量主 要通过光学编码器将运动转换成一系列 数字脉冲,这些脉冲再被转换成相对或 绝对位置测量数据。准确测量偏转角度 是模型控制要求所必需的。

2) 机械装置设计

风洞试验中,如果控制面位置不能 精确设定和保持,准确的角度偏转测量 将是没有意义的。因此需要控制面位置 被固定在一定的容差范围内。名义上控 制面在俯仰或滚转变化到预定位置后,

图4 DNW研制的大尺度、多功能、全遥控运输 机风洞试验模型

不期望遥控控制面在气动力的作用下 有位置漂移,因此,如果编码器感应到 变化,控制系统将修正这个漂移。

3) 控制设计

一个拥有高品质驱动机构和精确 位置测量能力的遥控模型系统不仅能 移动控制面到固定位置,而且能提供发 展先进风洞试验技术的机会。AEDC已 经发展了一种当模型运动时主动配平 (零值)三分量气动力矩的试验系统。飞 行器的控制极限能够快速准确地获得。

3 风洞试验模型的其他技术

科学技术的发展使现代飞行器的 设计思路更为广阔,飞行器研制对风洞 试验数据精准度要求提高,这促进了风 洞试验模型技术的发展。

3.1 风洞模型新材料技术

随着飞行新概念和流动控制新技 术在飞行器研制中的应用,为了满足 模型模拟的需要,风洞模型材料也有 新的发展。例如,变形体飞机(Morphing Aircraft)是一种允许飞机在飞行中重 构其气动布局的先进概念飞机,它能 以最优布局执行两个或多个不相容的 任务。为了在风洞中开展变形体飞机 试验,需要研发新型模型材料,实现 机翼蒙皮无缝连接变形。美国洛克希 德•马丁公司,开展了形状记忆聚合物 (SMP)和增强硅树脂弹性橡胶研究, 制作了可折叠翼变形体模型,在NASA 兰利研究中心跨声速动态风洞(TDT) 进行了试验。

目前,NASA积极致力于具有结构 重构能力的高温形状记忆合金(SMA) 研究。NASA格林研究中心与波音、 NASA兰利研究中心、德克萨斯州的 A&M等联合成立了一个新机构,加速发 展和认证基于高温形状记忆合金的重 构航空结构。在NASA 40ft×80ft风洞,波 音、空军、NASA、陆军、麻省理工学院和 马里兰大学等在全尺寸旋翼上验证了智 能材料控制的调整片。佛罗里达大学演 示验证了离子聚合合金用于飞行中致动 的可行性。德国航空航天中心将粗纤维 复合材料(MFC)作为致动材料融合于叶 片蒙皮,设计加工和试验了主动扭转叶 片。图6给出了部分模型新材料。

3.2 风洞模型试验的抑振技术

在风洞模型试验过程中,由于气流 的脉动、风洞动力系统的振动、噪声、模 型结构及其产生的气动力等因素的共 同作用,可以很容易观察到模型在风洞 吹风试验中存在的振动现象。模型振动 影响风洞试验数据质量,严重时将使试 验无法进行。为了抑制模型的振动,仅 在模型设计过程中考虑模型自身的一 些特性是不够的,必须采取抑振技术, 保持模型稳定,提高风洞试验数据的可 靠性。

图5 采用形状记忆聚合物制作的变形体飞机风洞模型

综述 Overview

金属橡胶 图6 新材料在风洞模型中应用

美国NASA兰利研究中心国家跨声 速风洞(NTF)研制了模型动态阻尼系 统,有效降低了风洞试验时模型的振动, 扩大了试验迎角范围。该系统主要包括 12个压电陶瓷作动器,作动器分4组,每 组3个正交分布(图7),由驱动放大器驱 动。2010年1月成功进行了风洞试验。试 验表明,不使用阻尼器,由于运输机模型 的振动,模型试验最大迎角只能做到6[°], 使用阻尼器后,模型试验最大迎角提高 到了12[°]。

3.3 风洞模型变形测量技术

风洞试验精细化的发展要求,不能 再简单地将风洞试验中的模型视为毫 无变形的刚体。对动态试验,风洞试验 中模型姿态的精确测量,对数据处理有 重要影响。例如,在颤振试验中,为了比 较非定常表面压力和计算结果,需要精 确测量机翼运动,因此促进了模型姿态/ 变形光学测量技术的发展。加拿大北方 数字公司生产的OptotrakR系统已成功 应用于波音公司和NASA 艾姆斯研究 中心的风洞中,用于模型气动弹性变形 和迎角测量。

模型姿态/变形光学测量技术主 要有:基于光线莫尔干涉条纹原理的技 术和基于摄影测量基本原理的技术。莫 尔干涉条纹的技术研究始于20世纪70 年代,现已用于定量测量气动载荷作用 下的风洞模型变形。德国航空航天中心 (DLR)最早开发了一套模型变形测量系

统(MDMS)。美国兰利研究中心开展了 投影波动干涉测量(PMI)技术研究,已 经在TDT和UPWT等风洞中应用。

目前光学测量技术大部分依据摄 影测量原理研制,如Optotrak系统。视频 模型变形测量系统(VMD)研究始于20 世纪80年代,通过精确测量布置在模型 上的标识点,计算出扭转、弯曲和迎角。 美国兰利研究中心NTF、TDT等风洞和 艾姆斯研究中心12ft压力风洞都建立了 专用的VMD测量系统。

4 结束语

进入21世纪以来,风洞模型技术和 风洞试验理念已经发生了很大变化。模 型快速成型技术为飞行器新概念设计 或修改、CFD验证和风洞试验验证之间 架起了桥梁。模型遥控技术不仅使风洞 试验的效率、成本、周期和数据的精准 度得到改善,而且使风洞试验能耗和劳 动强度降低。风洞模型新材料、新技术 的发展和应用拓展了风洞试验技术创 新发展的途径,有力地促进了风洞试验

图7 风洞模型试验抑振技术

压电致动模型部件

的精细化发展,降低了飞行器研制的成本和风险,为飞行器的发展提供了可靠的地面试验模拟支持。

参考文献

[1] Tyler C. Evaluation of rapid prototyping technologies for use in wind tunnel model fabrication[R]. AIAA2005– 1301.

[2] Christensen P F. Methods for increasing wind tunnel testing effectiveness[R]. AIAA2008–1655.

[3] Aghanajafi C. Integration of threedimensional printing technology for windtunnel model fabrication[J]. Journal of Aircraft, 2010,47(6).

[4] Ulrich A .Remotely controlled movable surface motorization of an industrial used wind tunnel model[R]. AIAA2010-4338.

[5] Paryz R .Recent developments at the NASA Langley research center national transonic facility[C]. The 113th Supersonic Tunnel Association, International, May 2010.

[6] Ivanco T G .Validation of the Lockheed Martin morphing concept with wind tunnel testing[R]. AIAA 2007–2235.