基于零电压注入的航空电驱动用永磁 电机系统零低速无位置传感器控制

陈俊磊1,樊英1,滕国飞2,唐琛1

1.东南大学, 江苏 南京 210096

2.航空工业西安航空计算技术研究所,陕西西安 710065

摘 要:针对航空电驱动系统零低速域高性能无位置传感器控制算法的需求,本文提出了一种基于零电压注入的无位置传 感器控制策略。首先,针对传统高频注入法的高频噪声问题,引入随机高频信号代替传统信号,在估计的d轴中激励出与位 置相关的响应电流。随后,对传统信号及随机高频信号的噪声产生与抑制机理进行理论分析;进一步分析死区效应对位置 观测的影响,在随机高频信号注入基础上,额外注入零电压矢量,并设计死区补偿策略以抑制由死区效应所引起的位置观测 误差。最后,通过MATLAB/Simulink验证了所提出无位置传感器控制策略的有效性。本文所提出的算法可实现零低速域的 低噪声低谐波无位置传感器控制,对航空电驱动系统控制策略的设计具有参考价值。

关键词:航空电驱动系统;永磁同步电机;零电压注入;随机高频信号注入;无位置传感器控制

中图分类号:V233.7+3 文献标识码:A

随着电作动、计算机、自动控制等技术的发展,电静液 作动器(EHA)、机电作动器(EMA)等技术在飞机中获得越 来越多的应用^[1]。飞机二次能源系统中电能逐步代替液 能、气能,由此飞机向多电化甚至全电化方向发展^[2]。而表 贴式永磁同步电机(SPMSM)由于其结构简单,拥有高可靠 性、高功率密度、高转矩密度以及优异的调速性能等优点, 已广泛应用于EHA、EMA等设备中^[3]。

高性能 SPMSM 电驱动系统要求实时准确地获取转子 位置信息,目前,所采用的机械位置传感器环境适应性差, 在高温、潮湿、多尘等恶劣环境下容易发生故障,受到撞击 也容易导致传感器失效,同时还会增加电驱动系统的体积、 成本以及降低系统的可靠性。因此,低成本、高精度、高可 靠的无位置传感器控制技术已成为高性能 SPMSM 电驱动 系统研究的热点^[4]。

无位置传感器控制技术大致可以分为两大类。第一 类方法大都依赖电机的基波模型,主要包括反电动势和磁 链观测器法,通过获取与转速相关的物理量,采取不同的 算法来提取转子位置信息^[5]。然而,反电动势占电压方程

DOI: 10.19452/j.issn1007-5453.2023.10.012

中的比重随着转速的降低而降低,基于电机模型的无位置 传感器控制方法在低速时效果较差,因此该速域常采用额 外信号注入的第二类方法来获取转子位置信息。

根据注入坐标系的不同,主流的高频信号注入法大致可 分为旋转注入法和脉振注入法两种。其中,旋转电压注入法 通过在αβ轴下注入正交正弦信号,并响应出包含转子位置信 息的电流信号,再通过信号处理技术解调出转子位置信号以 实现无位置传感器控制⁶⁶。该方法对电流的影响较大,会产 生较大转矩脉动,且信号处理过程需要采用较多滤波器,故 而产生相位延迟。旋转电压注入法一般不会引起磁饱和,因 此只适用于具有结构凸极性的内置式永磁同步电机。

考虑到SPMSM凸极效应不明显的特点,文献[7]提出了 脉振电压注入法,不同于旋转注入法,脉振注入法在估计的 旋转坐标系下注入高频信号,而且为了尽量减少对转矩产生 的影响,一般在估计*d*轴下注入高频信号。通过注入高频信 号,估计*q*轴高频电流中包含了转子位置误差信号,利用位置 观测器将观测误差收敛至零即可实现无位置传感器控制。 相比于旋转注入法,脉振注入法对转矩的影响较小,且可用

收稿日期: 2023-05-31;退修日期: 2023-08-07;录用日期: 2023-09-08 基金项目: 航空科学基金(201919069001)

引用格式: Chen Junlei, Fan Ying, Teng Guofei, et al. Sensorless control of SPMSM in aviation electric drive system at zero-low speed based on zero voltage injection[J]. Aeronautical Science & Technology, 2023, 34(10):92-99. 陈俊磊, 樊英, 滕国飞,等. 基于零电压注入的 航空电驱动用永磁电机系统零低速无位置传感器控制[J]. 航空科学技术, 2023, 34(10):92-99.

于 SPMSM。除了注入高频正弦波以外,还可以注入高频方 波信号^[8]。高频方波注入法的优势在于可以大大提高注入信 号的频率,有利于高频信号的分离与提取^[9]。针对高频噪声 问题,文献[10]提出了一种注入信号幅值自适应调节的方法, 将暂态和稳态区分对待,以高幅值保证动态性能为原则降低 稳态时的信号幅值以达到降噪的目的。文献[11]和[12]将随 机信号注入的思想用于永磁同步电机无位置传感器控制中, 结果表明,高频随机信号注入法可以在保证高精度位置观测 的同时降低信号注入所引起的噪声。文献[13]考虑到高频信 号的数字延时效应,提出了一种带补偿的信号解调方法,进 一步地提高了位置估计精度。

对于传统电压源型两电平拓扑而言,死区时间的存在 将导致逆变器输出电压降低且存在高次谐波分量。因此, 有大量学者对死区时间补偿展开研究以提升驱动系统性 能,且一般而言,死区补偿的方法可分为基于平均值[14]和 脉冲[15]两类。这些方法被证明在准确获取电流极性的前 提下能够有效补偿死区时间,但却依赖于更为复杂的信号 处理算法及硬件电路。对此,文献[16]和[17]分别设计了 一种扰动观测器和一种自整定方法用以逆变器非线性的 补偿。然而,这两者性能的实现均需要大量的参数调节。 因此,文献[18]提出了一种实时估计非线性因素所产生误 差电压的方法,通过构建转子磁链微分矢量,并利用其与 位置相关正交分量的内外积即可观测补偿电压。该方法 无需额外的硬件电路或复杂的软件算法来判断电流极性, 也不需要复杂的参数调节过程。然而,对于基于高频注入 法的零低速域而言,高频响应分量的存在将对误差电压的 估计产生影响,致使其无法准确实现前馈补偿。

对此,本文提出了一种基于零电压注入和死区补偿的 SPMSM无位置传感器控制策略。首先,分析死区效应对 位置观测的影响,针对高频信号所带来的干扰问题,在传 统随机信号的基础上插入了零电压信号,利用零电压注入 时刻对死区进行观测并补偿电压给定值,从而有效抑制由 死区引起的位置误差上的高次脉动。最后,通过仿真验证 所提出策略的正确性和有效性。

1 控制系统

图1所示为基于零电压注入的高频注入法控制框图,主 要包含双闭环矢量控制系统模块、随机高频信号注入模块、 位置观测模块和死区补偿模块4部分。其中,双闭环矢量控 制系统为转速/电流双闭环结构,转速环及电流环控制器采 用PI调节器,电流环的输出作为SVPWM的给定值生成等 效 PWM 波驱动逆变器。随机高频信号注入模块负责生成 及注入高频信号,以此在电流中激励包含位置信息的高频 响应,再通过位置观测模块对位置进行观测以实现无位置 传感器控制,而死区补偿模块则负责估计并补偿死区效应 所引起的电压误差,抑制估计位置中的高次脉动。

Fig.1 Block diagram of sensorless control based on zero voltage injection

图中, u_{dq} 及 i_{dq} 为dq轴下的定子电压与定子电流; $u_{a\beta}$ 及 $i_{a\beta}$ 为 $\alpha\beta$ 轴下的定子电压与定子电流; θ_e^e 及 ω_e^e 为转子位置和 电角速度的估计值; φ_d 为解调方波信号;上标"*"代表给定 值; u_{dqDead} 为dq轴下死区补偿电压; $\Delta i_{a\betah}$ 及 $\Delta i_{a\betah_pu}$ 为 $\alpha\beta$ 轴下 高频电流增量及其标幺值。

2 基于随机高频信号注入的无位置传感器控 制策略

2.1 随机信号简介

本文所采取的用于实现噪声抑制的信号为频率固定、 相位随机的高频方波信号,且所注入信号如图2所示。

Fig.2 High-frequency square wave signal with fixed frequency and random phase

$$g_{s}(t,T_{i},90^{\circ}) = -g_{s}(t,T_{i},270^{\circ}) = \begin{cases} 1, & t_{r}(t,T_{i}) \in \left(\frac{T_{i}}{4},\frac{3T_{i}}{4}\right] \\ -1, & t_{r}(t,T_{i}) \in \left\{(0,\frac{T_{i}}{4}] \cup \left(\frac{3T_{i}}{4},T_{i}\right]\right\} \end{cases}$$
(1)
$$g_{r}(t,T,90^{\circ}) = -g_{r}(t,T,270^{\circ}) = -g_{r}(t,T,270^{\circ$$

$$\begin{cases} -\frac{4t_r(t,T_i)}{T_i}, & t_r(t,T_i) \in (0, \frac{T_i}{4}] \\ -2 + \frac{4t_r(t,T_i)}{T_i}, & t_r(t,T_i) \in (\frac{T_i}{4}, \frac{3T_i}{4}] \\ 4 - \frac{4t_r(t,T_i)}{T_i}, & t_r(t,T_i) \in (\frac{3T_i}{4}, T_i] \end{cases}$$
(2)

式中,g_s与g_t分别为单位幅值方波与三角波信号,t_r(t, T_i)表示t除以T_i的余数,T_i为基本注入单元的周期。进一步地估计dq轴所注入高频信号,可表示为

$$\begin{bmatrix} u_{\hat{d}h}(t) \\ u_{\hat{q}h}(t) \end{bmatrix} = U_{inj} \begin{bmatrix} \sum_{k=1}^{\infty} u_{inj}(t - kT_i, T_i, \varphi_R) \\ 0 \end{bmatrix}$$
(3)

 $u_{inj}(t - kT_i, T_i, \varphi_R) = \Re[g_s(t, T_i, 90^\circ), g_s(t, T_i, 270^\circ)]$ (4) 式中, u_{dqh} 为dq轴下的高频定子电压,上标"^"代表估计值, U_{inj} 为注入信号的幅值, u_{inj} 为单位幅值信号, φ_R 为注入信号的相位, \Re 为随机算子。

2.2 随机高频信号注入法原理

当电机运行在零低速时,注入信号的频率远高于电机 运行频率。此时,电流微分项占主导地位,而电压方程也可 以进一步简化为

$$\begin{bmatrix} u_{dh} \\ u_{qh} \end{bmatrix} = \begin{bmatrix} L_{dh} & 0 \\ 0 & L_{qh} \end{bmatrix} \frac{d}{dt} \begin{bmatrix} i_{dh} \\ i_{qh} \end{bmatrix}$$
(5)

式中,*i*_{dph}为*dq*轴下的高频定子电流;*L*_{dph}为*dq*轴下的高频电 感。由于实际转子位置是未知的,所以高频信号只能注入估 计*d*轴中,其中,估计*d*轴与实际*d*轴的关系如图3所示。

$$\boldsymbol{T}\left(\tilde{\theta}_{e}\right) = \begin{bmatrix} \cos \tilde{\theta}_{e} & \sin \tilde{\theta}_{e} \\ -\sin \tilde{\theta}_{e} & \cos \tilde{\theta}_{e} \end{bmatrix}$$
(6)

式中, $\tilde{\theta}_e = \theta_e - \hat{\theta}_e$ 。由式(5)和式(6)可得,在注入高频方波 信号之后, $\alpha\beta$ 轴下的高频电流响应可表示为

$$\begin{bmatrix} i_{\alpha h}(t) \\ i_{\beta h}(t) \end{bmatrix} = T^{-1} \left(\theta_{e} \right) \begin{bmatrix} L_{dh} & 0 \\ 0 & L_{qh} \end{bmatrix} T \left(\tilde{\theta}_{e} \right) \times \\ \int \begin{bmatrix} u_{\hat{u}h} \\ u_{\hat{q}h} \end{bmatrix} dt = \frac{U_{\text{inj}} T_{i}}{4L_{d} L_{q}} i_{\text{inj}} (t - kT_{i}, T_{i}, \varphi_{R}) \times \\ \begin{bmatrix} L_{q} \cos \theta_{e} \cos \tilde{\theta}_{e} + L_{d} \sin \theta_{e} \sin \tilde{\theta}_{e} \\ L_{q} \sin \theta_{e} \cos \tilde{\theta}_{e} - L_{d} \cos \theta_{e} \sin \tilde{\theta}_{e} \end{bmatrix}$$
(7)

 $i_{inj}(t - kT_i, T_i, \varphi_R) = \Re [g_1(t, T_i, 90°), g_1(t, T_i, 270°)] (8)$ 式中, i_{inj} 为单位幅值响应电流。从式(7)可以看出, $\alpha\beta$ 轴高频 响应电流中包含转子位置信息,故可利用其进行位置观测, 为便于分析,当电机低速运行时,假设两个相邻采样点的基 波信号相等,则电流和相邻时刻高频电流增量可表示为

$$\begin{cases} i_{\alpha\beta}(k) = i_{\alpha\betah}(k) + i_{\alpha\betai}(k) \\ i_{\alpha\beta}(k-1) = i_{\alpha\betah}(k-1) + i_{\alpha\betai}(k-1) \\ \Delta i_{\alpha\betah} = i_{\alpha\beta}(k) - i_{\alpha\beta}(k-1) \end{cases}$$
(9)

式中,*i*_{afh}及*i*_{aff}为 af 轴下的高频和基频定子电流。

将式(7)代入式(9)可得

$$\begin{bmatrix} \Delta i_{ah} \\ \Delta i_{\beta h} \end{bmatrix} = \frac{U_{inj}T_i}{4L_dL_q} u_{inj} (t - kT_i - T_s, T_i, \varphi_R) \times \begin{bmatrix} L_q \cos \theta_e \cos \tilde{\theta}_e + L_d \sin \theta_e \sin \tilde{\theta}_e \\ L_q \sin \theta_e \cos \tilde{\theta}_e - L_d \cos \theta_e \sin \tilde{\theta}_e \end{bmatrix}$$
(10)

从式(10)可以看出,其系数上存在一个延迟注入信号 一个采样周期的方波信号,该方波信号将导致振荡,故在此 采用一个与其同相位信号,与其相乘可得

$$\begin{bmatrix} \Delta i_{ah_dem} \\ \Delta i_{\betah_dem} \end{bmatrix} = \frac{U_{inj}T_i}{4L_dL_q} \times \begin{bmatrix} L_q \cos\theta_e \cos\tilde{\theta}_e + L_d \sin\theta_e \sin\tilde{\theta}_e \\ L_q \sin\theta_e \cos\tilde{\theta}_e - L_d \cos\theta_e \sin\tilde{\theta}_e \end{bmatrix} = \frac{U_{inj}T_i}{4L_dL_q} \sqrt{(L_d \cos\tilde{\theta}_e)^2 + (L_q \sin\tilde{\theta}_e)^2} \times \begin{bmatrix} \cos(\theta_e - \delta) \\ \sin(\theta_e - \delta) \end{bmatrix}$$
(11)

$$\tan \delta = \frac{L_d}{L_q} \tan \tilde{\theta}_e \tag{12}$$

式中,Δ*i*_{aph_dem}为αβ轴下高频电流增量解调值。进一步地, 对式(11)作归一化处理

$$\begin{bmatrix} \Delta i_{ah_{pu}} \\ \Delta i_{\beta h_{pu}} \end{bmatrix} = \begin{bmatrix} \cos\left(\theta_{e} - \delta\right) \\ \sin\left(\theta_{e} - \delta\right) \end{bmatrix}$$
(13)

最后,可通过PLL得到式(14)所示位置误差信号ε,并 将其调节至零即可实现位置观测

$$\varepsilon = \Delta i_{\beta h_{pu}} \cos \hat{\theta}_{e} - \Delta i_{\alpha h_{pu}} \sin \hat{\theta}_{e} = \sin \left(\tilde{\theta}_{e} - \delta \right) \approx \sin \left[\left(1 - \frac{L_{d}}{L_{q}} \right) \tilde{\theta}_{e} \right]$$
(14)

2.3 随机信号注入法噪声抑制分析

功率谱密度(PSD)函数是进行随机信号分析的一个常 用工具,一般采用对电流进行PSD分析来衡量噪声的大小, 且电流PSD模型可表示为

$$\begin{cases} S(f) = S_{c}(f) + S_{d}(f) \\ S_{c}(f) = f_{i} \left\{ E\left[\left| I(f) \right|^{2} \right] - \left| E\left[I(f) \right] \right|^{2} \right\} \\ S_{d}(f) = f_{i}^{2} \left| E\left[I(f) \right] \right|^{2} \sum_{k=-\infty}^{+\infty} \delta(f - kf_{i}) \end{cases}$$
(15)

式中, $S_{a}(f)$ 和 $S_{d}(f)$ 分别为PSD函数的连续项和离散项,E[]为数学期望算子;I(f)为电流单周期的傅里叶变换, f_{i} 为注入信号频率; $\delta(f)$ 为单位冲激函数;k为整数。将式(2)所示的单位幅值三角波作为高频响应电流,对其进行傅里叶变换可得

由式(16)可知,对于传统的高频信号注入法而言,仅 注入90°或270°的单一相位高频信号,故在其注入信号频 率的奇数次频率处的单周期电流傅里叶变换不为零,即其 PSD函数中的离散分量不为零。因此,传统高频信号注入 法将在其注入信号频率的奇数次频率处产生刺耳高频噪 声。然而,对于相位随机的高频信号注入法而言,响应电 流中随机分布着90°和270°相位的高频信号,其数学期望 可表示为

$$E[I(f)] = p_{I90^{\circ}}(f) \quad p_{I270^{\circ}}(f)] \begin{bmatrix} I_{90^{\circ}}(f) \\ I_{270^{\circ}}(f) \end{bmatrix}$$
(17)

式中,*p*_{190°}(*f*)和*p*_{1270°}(*f*)分别为90°和270°相位高频信号的概率,且当两者均为0.5时,响应电流傅里叶变换的数学期望为零,此时,相应的电流 PSD 函数中的离散分量 也为零。因此,相比于传统高频注入法,高频随机信号 注入法可消除电流 PSD 函数中的离散分量,从而达到 抑制噪声的效果。

3 基于零电压注入的高频注入法死区补偿 策略

死区时间能够有效避免同一桥臂开关器件同时导通, 然而,其存在也将导致估计转子位置中产生6次谐波分量,尤其是对于低占空比的低速域而言。此外,零低速域 高频信号的存在也将直接影响死区电压的补偿。针对此 问题,本文提出一种基于零电压注入的高频注入法死区补 偿策略,通过在零电压注入时刻对死区进行补偿以避免高 频信号的影响。

3.1 死区效应对位置观测的影响

对于星形连接的永磁同步电机而言,死区效应会使电机相电压产生6k±1次谐波,进而使αβ轴下电流与反电动势 产生6k±1次谐波。结合上文中随机高频信号注入法的信号处理过程,考虑死区效应的归一化后用于位置观测的正 交信号可表示为

$$\begin{cases} \Delta i_{ah_pu} = \cos\left(\theta_e - \delta\right) + \frac{I_{1 \pm 6k}}{\sqrt{\Delta i_{ah_dem}^2 + \Delta i_{\beta h_dem}^2}} \times \\ \sum_{k=1}^{\infty} \cos\left((1 \pm 6k)\theta_e\right) \\ i_{\beta h_pu} = \sin\left(\theta_e - \delta\right) + \frac{I_{1 \pm 6k}}{\sqrt{\Delta i_{ah_dem}^2 + \Delta i_{\beta h_dem}^2}} \times \\ \sum_{k=1}^{\infty} \sin\left((1 \pm 6k)\theta_e\right) \end{cases}$$
(18)

式中,*I*_{1±6k}为1±6k次谐波的幅值。进一步可推得由PLL得 到的位置误差信号为

$$\varepsilon = \Delta i_{\beta h_p u} \cos \hat{\theta}_e - \Delta i_{\alpha h_p u} \sin \hat{\theta}_e \approx \sin \left[\left(1 - \frac{L_d}{L_q} \right) \tilde{\theta}_e \right] + \frac{I_{1 \pm 6k}}{\sqrt{\Delta i_{\alpha h_p dem}^2 + \Delta i_{\beta h_p dem}^2}} \sum_{k=1}^{\infty} \sin \left(\pm 6k \theta_e \right)$$
(19)

由式(19)可知,死区效应将导致位置误差信号中存在6的 整数倍次谐波,从而导致估计转子位置中存在6倍次脉动。

3.2 基于零电压注入的高频注入法

为了对死区效应进行补偿并降低高频信号对补偿算法 的影响,本文在随机高频注入法的基础上注入了额外的零 电压,其控制框图如图1所示。

不同于传统的随机高频信号注入法,该方法在每个随 机高频信号后注入了一段零电压,该段零电压时间内仅存 在基波分量。故可利用零电压注入时刻对死区电压进行观 测以避免高频信号的影响。

3.3 死区电压补偿

为了对死区效应进行补偿,首先,给出永磁同步电机考 虑死区的电压方程为

$$\begin{bmatrix} u_d \\ u_q \end{bmatrix} = \begin{bmatrix} R_s + L_d p & -\omega_e L_q \\ \omega_e L_d & R_s + L_q p \end{bmatrix} \begin{bmatrix} i_d \\ i_q \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_e \psi_f \end{bmatrix} + \begin{bmatrix} u_{d\text{Dead}} \\ u_{q\text{Dead}} \end{bmatrix}$$
(20)

式中, u_{dDead} 和 u_{qDead} 分别为dq轴下的死区电压。将其变换至 $a\beta$ 轴系下得

$$\begin{bmatrix} u_{\alpha} \\ u_{\beta} \end{bmatrix} = \begin{bmatrix} R_s + L_d p & \omega_e (L_d - L_q) \\ -\omega_e (L_d - L_q) & R_s + L_d p \end{bmatrix} \times \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + E_{ex} \begin{bmatrix} -\sin \theta_e \\ \cos \theta_e \end{bmatrix} + \begin{bmatrix} u_{d\text{Dead}} \cos \theta_e - u_{q\text{Dead}} \sin \theta_e \\ u_{d\text{Dead}} \sin \theta_e + u_{a\text{Dead}} \cos \theta_e \end{bmatrix}$$
(21)

$$\begin{bmatrix} \Delta \lambda_{a} \\ \Delta \lambda_{\beta} \end{bmatrix} = \begin{bmatrix} [U_{a} - R_{s}i_{a} - \omega_{e}(L_{d} - L_{q})i_{\beta}] T_{s} - L_{d}\Delta i_{a} \\ [U_{\beta} - R_{s}i_{\beta} + \omega_{e}(L_{d} - L_{q})i_{a}] T_{s} - L_{d}\Delta i_{\beta} \\ \end{bmatrix}$$

$$\begin{bmatrix} -(\chi + T_{s}u_{q\text{Dead}}) \cdot \sin \theta_{e} + T_{s}u_{d\text{Dead}} \cos \theta_{e} \\ (\chi + T_{s}u_{q\text{Dead}}) \cdot \cos \theta_{e} + T_{s}u_{d\text{Dead}} \sin \theta_{e} \end{bmatrix}$$

$$(22)$$

式中, $\chi = [(L_d - L_q)i_d + \psi_f] \cdot \Delta \theta_e - (L_d - L_q) \cdot \Delta i_q, \Delta \lambda_{a\beta}$ 为中 间变量。

再者,由式(5)可推得dq轴下的死区电压为

$$\begin{bmatrix} u_{d\text{Dead}} \\ u_{q\text{Dead}} \end{bmatrix} = \frac{1}{T_s} \begin{bmatrix} \cos \theta_e & \sin \theta_e \\ -\sin \theta_e & \cos \theta_e \end{bmatrix} \begin{bmatrix} \Delta \lambda_{\alpha} \\ \Delta \lambda_{\beta} \end{bmatrix} - \frac{1}{T_s} \begin{bmatrix} 0 \\ \chi \end{bmatrix}$$
(23)

最后,将观测所得死区电压前馈补偿至 dq 轴电压给定即可。

4 实例分析

4.1 仿真工况介绍

为了验证上述基于零电压注入的无位置传感器控制算 法的正确性和有效性,在Matlab/Simulink中搭建了仿真模 型如图4所示,包含了电机模型、两电平电压源逆变器、 FOC模块、死区补偿模块和位置观测模块,其中,主要仿真 参数见表1。

4.2 仿真结果分析

(1)零低速无位置传感器控制性能

图5所示为零速额定负载阶跃的仿真波形,且在3s和 5s时刻分别突加突减5.73N·m负载,波形从上往下分别为 转速、转子位置和位置误差。其中,转速和转子位置图中包 含了实际值和估计值,实际值为仿真中编码器所得值,而估 计值为无位置传感器控制算法估计所得,在图中用上标"^" 表示。此外,由该仿真结果可以看出,估计转子位置和转速 在负载突变时也能精确地跟踪实际值,转子位置估计误差 仅存在暂时的0.3rad,经过仅约0.5s后可收敛至0rad附近, 且稳态转子位置误差能控制在0.15rad以内,表现出所提出 算法在额定负载阶跃过程中具备较强的实时性以及较低的 转子位置误差。

图6给出了带额定负载5.73N·m变速运行的仿真结果,其 中转速在0~200r/min之间变化,图中给出了转速波形、转子位 置波形和位置误差波形,可见,在变速过程中,估计转速和转 子位置能够快速、准确地跟踪实际值,在达到0时转子位置误 差出现小幅振荡,但在约0.1s后收敛回0,且位置误差几乎可

图4 零电压注入的无位置传感器控制算法仿真模型

Fig.4 Simulation model of zero voltage injection sensorless control algorithm

Table T Simulation parameters			
参数	数值	参数	数值
高频电压幅值/V	20	高频电压周期/ms	1.6
转速环Kp	0.014	转速环K _i	0.18
电流环K _p	5000	电流环K _i	2
锁相环K _p	4800	锁相环K _i	2.8e ⁻⁴
死区时间/μs	2	零电压时间/ms	0.8

仿真参数

表1

(2)降噪性能

为了验证本方法的降噪性能,图7给出了传统高频注 人法和随机高频注入法相电流快速傅里叶分析(FFT)对比 图,其中所注入高频信号的频率均为625Hz,值得一提的 是,由于相电流PSD与相电流傅里叶变换的数学期望有关, 故在此可利用相电流的FFT分析等效替换相电流PSD分 析。由图7可知,传统高频注入法的相电流FFT中存在其 注入频率奇数次的谐波分量,这也是产生高频噪声的原因, 而本文所采用的随机信号注入法的相电流FFT中不包含离

(3) 死区补偿性能

图 8 为 50r/min 空载运行时的死区补偿仿真结果,图 8 (a)和图 8(b)分别为补偿前和补偿后的转子位置与位置误差 波形,图 8(c)和图 8(d)为对应的位置误差 FFT分析结果,为了 便于分析,在两者的位置误差波形中人为加入了 1rad 的直流 偏置。由仿真结果可知,空载运行时,死区补偿可以有效降低 位置误差中的6次和12次谐波,大约能分别降低2%与4%。

图9为50r/min额定负载运行时的死区补偿仿真结果, 图9顺序与图8中一致。仿真结果表明,本文中的死区补偿 策略在满载运行时也能大大降低谐波分量。

此外,图10给出了*dq*轴下死区补偿电压波形,图10(a)、 图10(b)分别为50r/min空载和额定负载运行时的仿真结果。 从结果可以看出,所提出算法在空载和满载时均可实现死区 电压的估计用于补偿死区效应,以降低运行时的转速谐波。

5 结论

本文提出了一种基于零电压注入无位置传感器控制策 略用于实现航空电驱动用永磁同步电机零低速域的高性能 控制。得益于随机高频信号的注入,由传统高频信号所引 起的高频噪声得到有效抑制。此外,所提出的零电压矢量

Fig.10 Result of dq-axis dead-time compensation voltage

注入可有效地消除高频信号对死区电压估计的影响,且对 死区效应进行补偿后可有效降低观测位置中的6次脉动。 仿真结果表明,所提出无位置传感器控制方法可控制位置 误差在0.15rad以内,且可有效地抑制高频噪声及死区效应 所引起的脉动。

参考文献

 [1] 李开省.电动飞机技术的发展研究[J].航空科学技术,2019, 30(1): 1-7.

Li Kaisheng. Research on the development of electric aircraft technology [J]. Aeronautical Science & Technology, 2019, 30 (1): 1-7. (in Chinese)

[2] 李开省.电动飞机核心技术研究综述[J]. 航空科学技术, 2019,30(11): 8-17.

Li Kaisheng. Summary of research on core technology of electric aircraft[J]. Aeronautical Science & Technology, 2019,

30(11): 8-17. (in Chinese)

- [3] 刘计龙,肖飞,沈洋,等.永磁同步电机无位置传感器控制技术研究综述[J].电工技术学报,2017,32(16): 76-88.
 Liu Jilong, Xiao Fei, Shen Yang, et al. Position-sensorless control technology of permanent-magnet synchronous motor:a review [J]. Transactions of China Electrotechnical Society, 2017, 32(16): 76-88. (in Chinese)
 [4] 穆作栋,程文渊,宋刚.电推进技术在航空业的应用[J]. 航空
 - 4] 修正标, 在文体, 不耐, 电推进设不住航空业的应用[J]. 航空 科学技术, 2019, 30(11): 30-35. Mu Zuodong, Cheng Wenyuan, Song Gang. Application of electric propulsion technology in aviation industry[J]. Aeronautical Science & Technology, 2019, 30(11): 30-35. (in Chinese)
 - [5] 王宏喆,甘醇,倪锴,等.基于SMO和RLS的航空电推进永磁 电机驱动系统[J].航空科学技术,2023,34(1):97-104.
 Wang Hongzhe, Gan Chun, Ni Kai, et al. Research on sensorless control of SPMSM in aviation electric propulsion drive system based on SMO and RLS [J]. Aeronautical Science & Technology, 2023, 34(1): 97-104. (in Chinese)
 - [6] Yang S C, Lorenz R D. Surface permanent magnet synchronous machine position estimation at low speed using eddy-current-reflected asymmetric resistance[J]. IEEE Transactions on Power Electronics, 2012, 27(5): 2595-2604.
 - [7] Jang J H, Sul S K, Ha J I, et al. Sensorless drive of surfacemounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency[J]. IEEE Transactions on Industry Applications, 2003, 39(4): 1031-1039.
 - [8] Zhang Y, Yin Z, Liu J, et al. IPMSM Sensorless Control Using High Frequency Voltage Injection Method with Random Switching Frequency for Audible Noise Improvement[J]. IEEE Transactions on Industrial Electronics, 2019, 67(7): 6019-6030.
 - [9] 何文云.永磁同步电机无位置传感器宽速域控制策略研究
 [D]. 徐州:中国矿业大学, 2019.
 He Wenyun. Research on sensorless control for PMSM over wide speed range[D]. Xuzhou: China University of Mining and Techonology, 2019. (in Chinese)
 - [10] Taniguchi S, Wakao S, Kondo K, et al. Position sensorless control of permanent magnet synchronous motor at low speed range using harmonic voltage injection[C]. European Conference on Power Electronics & Applications. IEEE, 2007.
 - [11] Hui J, Sumner M. Sensorless torque of a PM motor using

modified HF injection method for audible noise reduction[C]. European Conference on Power Electronics and Applications. IEEE, 2011.

- [12] Shun T, Kazuya Y, Kazuaki Y. Noise reduction method by injected frequency control for position sensorless control of permanent magnet synchronous motor[C]. Power Electronics Conference. IEEE, 2014.
- Wang G, Yang L, Yuan B, et al. Pseudo-Random High-Frequency Square-Wave Voltage Injection Based Sensorless Control of IPMSM Drives for Audible Noise Reduction[J].
 IEEE Transactions on Industrial Electronics, 2016, 63(13): 7423-7433.
- [14] Alfredo R, Thomas L. On-line dead-time compensation technique for open-loop PWM-VSI drives[J]. IEEE Transactions

on Power Electronics, 1999, 14(4):683-689.

- [15] David L. Pulse-based dead-time compensator for PWM voltage inverters[J]. IEEE Transactions on Industrial Electronics, 1997, 44 (2):191-197.
- [16] Kim H S, Moon H T, Youn M J. On-line dead-time compensation method using disturbance observer[J]. IEEE Transactions on Power Electronics, 2003, 18(6):1336-1345.
- [17] Chen S, Namuduri C, Mir S. Controller-induced parasitic torque ripples in a PM synchronous motor[J]. IEEE Transactions on Industry Applications, 2000, 38(5):1273-1281.
- [18] Kim S Y, Lee W, Rho M S, et al. Effective Dead-Time Compensation Using a Simple Vectorial Disturbance Estimator in PMSM Drives[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5):1609-1614.

Sensorless Control of SPMSM in Aviation Electric Drive System at Zero-Low Speed Based on Zero Voltage Injection

Chen Junlei¹, Fan Ying¹, Teng Guofei², Tang Chen¹

1. Southeast University, Nanjing 210096, China

2. AVIC Computing Technique Research Institute, Xi' an 710065, China

Abstract: This paper proposes a sensorless control method based on zero voltage injection to achieve high-performance control of permanent magnet synchronous motors in the zero low speed range for aviation electric drive system. Firstly, in response to the high-frequency noise of traditional high-frequency injection methods, a pseudo-random high-frequency signal is introduced to replace the traditional signal for injection, and the induced current is excited in the estimated *d*-axis. Then theoretical analysis on the noise generation and suppression mechanisms of traditional signals and the pseudo-random high-frequency signal is carried out; Furthermore, the impact of dead-time effect on position observation is analyzed, an additional zero voltage vector on the basis of pseudo-random high-frequency signal injection, and a dead-time compensation strategy to suppress position observation errors caused by dead-time effect is designed. Finally, the effectiveness of the proposed sensorless control strategy is verified through MATLAB/Simulink. The algorithm proposed in this paper can realize the low noise, low harmonic and sensorless control, which provides reference value for the design of aviation electric drive system control strategy.

Key Words: aviation electric drive system; permanent magnet synchronous motor; zero voltage injection; pseudorandom high-frequency signal injection; sensorless control

Received: 2023-05-31; Revised: 2023-08-07; Accepted: 2023-09-08 Foundation item: Aeronautical Science Foundation of China(201919069001)