

GNSS多频观测对定姿精度的影响分析*

Analysis on GNSS Multi-Frequency Observation of Attitude **Determination Accuracy**

> 李峰 / 北京航空航天大学电子信息工程学院 陈万诵

摘 要:针对单历元定姿的精度问题,对多频双差观测模型下的定姿精度进行了理论推导,分析了影响定姿精度的 各种因素,并着重研究了GPS和Galileo系统下多频观测值对定姿精度的改善程度。理论分析和仿真实验均表明,相 比于单频定姿、多频观测可以显著提高定姿精度。

关键词:全球导航卫星系统:姿态解算:整周模糊度解算:误差分析 Keywords: GPS: attitude determination: integer ambiguity resolution: error analysis

0 引言

全球导航卫星系统(GNSS)具有全球性、全天候和连续的 精密三维定位能力,目前已经广泛应用于定位、导航、授时、测 地等各种领域。利用载波相位相对定位技术能够进行高精度 的载体姿态解算,相比于传统的惯性器件解算姿态方法,具有 体积小、成本低、无累积误差等优势,已经成为当前姿态测量的 主要手段之一。而单历元定姿算法因其避免了周跳检测和修 复,成为当前工程应用的研究热点^[1]。对于GNSS单历元定姿算 法而言,成功率和精度是其两个重要的指标。目前,国内外已有 大量算法提升整周模糊度解算的成功率,其中利用基于基线 长度约束的LAMBDA算法是单历元求解载体姿态的一种非常 有效的算法[2],但对单历元定姿精度的理论分析还缺少较为完 备的相关研究。本文在该算法的基础上,基于经典的双差观测 模型,对单历元定姿的精度进行了理论分析,研究了影响定姿 的各种因素,包括基线长度、基线方位角、卫星几何分布、频率 个数以及载波相位和码的观测精度,着重分析了多频观测值 对定姿精度的影响,并进行了仿真评估与验证。

1 GPS单历元定姿数学模型

以A、B两个天线为端点的基线,其关于卫星k在Li波段的 单差载波相位观测方程和单

$$\lambda_i(\varphi_{i,AB}^k + N_{i,AB}^k) = r_{AB}^k + c(\delta t_A - \delta t_B) + v_{i,AB}^k$$
(1)

$$\rho_{i,AB}^{k} = r_{AB}^{k} + c\left(\delta t_{A} - \delta t_{B}\right) + \mu_{i,AB}^{k}$$
⁽²⁾

其中, $\varphi_{i,AB}^{k}$ 是A、B两个天线到卫星k的单差载波相位的小 数部分, $N_{i,AB}^{k}$ 是待估计的单差整周模糊度, $\rho_{i,AB}^{k}$ 是两个天线到 卫星k的单差码观测量, r_{AB}^{k} 为其单差几何距离, λ_{i} 是载波波长, δt_{A} 和 δt_{a} 分别是由两个接收机钟差引起的观测误差, $v_{i,AB}^{k}$ 是单差 载波相位观测噪声, μ_{iAB}^k 是单差码观测噪声。对于短基线而 言,两天线到卫星的视向几乎平行,则单差几何距离可以看 成基线向量在视向方向上的投影,即有^[3]

$$\Delta r_{AB}^{k} = \left(s^{k}\right)^{\mathrm{T}} \cdot b \tag{3}$$

其中s^k是天线到卫星k的单位矢量,b是基线向量。对于m卫 星而言,所有单差载波相位和码观测值分别写成如下矩阵形式

$$y_{i,s} = \frac{1}{\lambda_i} E \cdot b - N_{i,s} + e + v_{i,s}, v_{i,s} \sim N(0, 2^{-2}_i I_m)$$
(4)

$$y_{i,s} = \frac{1}{i} E \cdot b + e + v_{i,s}, v_{i,s} \sim N(0, 2^{-2} I_m)$$

$$\pm \Phi$$
(5)

$$e = (1, 1, \dots 1)^{\mathrm{T}}, \beta = c \cdot (\delta t_{A} - \delta t_{B}) / \lambda_{1}, y_{i,s}^{\varphi} = \begin{bmatrix} \varphi_{i,AB}^{1} \\ \varphi_{i,AB}^{2} \\ \varphi_{i,AB}^{m} \end{bmatrix}, y_{i,s}^{\rho} = \begin{bmatrix} \rho_{i,AB}^{1} \\ \rho_{i,AB}^{2} \\ \rho_{i,AB}^{m} \end{bmatrix}, N_{i,s}^{n} = \begin{bmatrix} N_{i,AB}^{1} \\ N_{i,AB}^{2} \\ N_{i,AB}^{m} \end{bmatrix}, E = \begin{bmatrix} (s^{1})^{\mathrm{T}} \\ (s^{2})^{\mathrm{T}} \\ (s^{m})^{\mathrm{T}} \end{bmatrix}$$

^{*} 国家863高技术研究发展计划资助课题(2009AA12Z313)

选取卫星1为参考星,则可定义双差算子为 $D = (-e_{m-1}, I_{m-1})$, 由于De=0,则将该算子分别作用在式(4)和式(5)的两端,可 以得到

$$y_{i,D}^{\varphi} = H_i \cdot b - N_{i,D} + v_{i,D}^{\varphi} , \quad v_{i,D}^{\varphi} \sim N(0, 2\sigma_{\phi,i}^2 Q)$$
(6)

 $DN_{i,s}$, $H_i = 1/\lambda_i DE$, $Q = DD^T \circ$

方差协方差矩阵中的Q是双差模型的协因数矩阵,联立式(6)和式(7),则有

$$\begin{bmatrix} y_{i,D} \\ y_{i,D} \end{bmatrix} = \begin{bmatrix} H_i & -I \\ H_i & 0 \end{bmatrix} \begin{bmatrix} b \\ N_{i,D} \end{bmatrix} + \begin{bmatrix} v_{i,D} \\ v_{i,D} \end{bmatrix}$$
(8)

将数学模型重新表述为

$$E(Y) = \begin{bmatrix} B & A \end{bmatrix} \begin{bmatrix} b \\ a \end{bmatrix}, D\{Y\} = Q_Y$$
(9)

其中, 整周模糊度向量, $Y = Y_{i,D}^{\varphi,\rho} = \begin{bmatrix} y_{i,D}^{\varphi} \\ y_{i,D}^{\rho} \end{bmatrix}, A = A_0 = \begin{bmatrix} -I \\ 0 \end{bmatrix},$ $B = B_i = \begin{bmatrix} H_i \\ H_i \end{bmatrix}, Q_{Y_i} = \begin{bmatrix} 2\sigma_{\varphi,i}^2 Q \\ 2\sigma_{\varphi,i}^2 Q \end{bmatrix} \circ$

上述模型是Li波段的单频载波相位和码联合定姿数学 模型。对于某个GNSS系统而言,假设其有n个频段的观测数 据可以利用,则有

$$Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}, B = \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix}, A = \begin{bmatrix} A_0 \\ \ddots \\ A_0 \end{bmatrix}, Q_Y = \begin{bmatrix} Q_{Y_1} \\ \ddots \\ Q_{Y_n} \end{bmatrix}$$
(10)

以GPS和Galileo系统为例,其具体的频率指标如表1所示:

表1 GPS系统和Galileo系统的频率指标

信号类型	频率	基频(MHz)	倍频数	载波频率(MHz)
GPS	L1	10.23	154	1575.42
	L2	10.23	120	1227.60
	L5	10.23	115	1176.45
Galileo	E1	10.23	154	1575.42
	E5a	10.23	115	1176.45
	E5b	10.23	118	1207.14

2 **姿态解算**

2.1 求解整周模糊度浮点解

首先不考虑a的整数特性,对式(9)采用加权最小二乘,可以得到

$$\begin{pmatrix} B^{\mathsf{T}}Q_{\mathsf{Y}}^{-\mathsf{I}}B & B^{\mathsf{T}}Q_{\mathsf{Y}}^{-\mathsf{I}}A \\ A^{\mathsf{T}}Q_{\mathsf{Y}}^{-\mathsf{I}}B & A^{\mathsf{T}}Q_{\mathsf{Y}}^{-\mathsf{I}}A \end{pmatrix} \begin{pmatrix} \hat{b} \\ \hat{a} \end{pmatrix} = \begin{pmatrix} B^{\mathsf{T}}Q_{\mathsf{Y}}^{-\mathsf{I}}Y \\ A^{\mathsf{T}}Q_{\mathsf{Y}}^{-\mathsf{I}}Y \end{pmatrix}$$
(11)

式(11)应用正交投影算法^[4],可以得到

$$\hat{a} = (\bar{A}^{T}Q_{Y}^{-1}\bar{A})^{-1}\bar{A}^{T}Q_{Y}^{-1}Y$$
(12)

$$\hat{b} = (\overline{B}^{\mathrm{T}} Q_{\mathrm{Y}}^{-1} \overline{B})^{-1} \overline{B}^{\mathrm{T}} Q_{\mathrm{Y}}^{-1} Y$$
(13)

其中

$$\overline{A} = P_{B}^{\perp}A, P_{B}^{\perp} = I - P_{B}, P_{B} = B(B^{T}Q_{Y}^{-1}B)^{-1}B^{T}Q_{Y}^{-1}$$
(14)

$$\overline{B} = P_A^{\perp} B, P_A^{\perp} = I - P_A, P_A = A (A^{\mathrm{T}} Q_{\mathrm{Y}}^{-1} A)^{-1} A^{\mathrm{T}} Q_{\mathrm{Y}}^{-1}$$
(15)

将模糊度浮点解a固定成整周a,则可以用来修正基线浮 点解,得到高精度的基线固定解:

$$\hat{b}(a) = (B^{T}Q_{y}^{-1}B)^{-1}B^{T}Q_{y}^{-1}(y - Aa)$$
(16)

2.2 固定整周模糊度

式(9)最小二乘估计的目标函数为

$$\min_{a,b} \left\| Y - Aa - Bb \right\|_{\mathcal{Q}_Y}^2, a \in \mathbb{Z}^n, b \in \mathbb{R}^3$$
(17)

其中
$$\|\cdot\|_{A}^{2} = (\cdot)^{\mathrm{T}} A^{-1}(\cdot)$$
,且由正交分解可得^[5]
 $\|Y - Aa - Bb\|_{Q_{Y}}^{2} = \|\hat{e}\|_{Q_{Y}}^{2} + \|\hat{a} - a\|_{Q_{\hat{a}}}^{2} + \|\hat{b}(a) - b\|_{Q_{\hat{b}(a)}}^{2}$ (18)

其中 $\hat{e} = Y - A\hat{a} - B\hat{b}$ 。

由于基线长度*l*可以作为先验条件已知,即有*b*在半径为 *l*的球面 *S*_l上^[6]:

$$S_{l} = \{b \in \mathbb{R}^{3} | \|b\| = l\}$$

$$(19)$$

将式(18)变为带有二次约束的整数最小二乘搜索问题'', 如下所示

$$\min_{a \in Z^{*}, b \in S_{I}} \left\| Y - Aa - Bb \right\|_{Q_{Y}}^{2} = \left\| \hat{e} \right\|_{Q_{Y}}^{2} + \min_{a \in Z^{*}} \left(\left\| a - a \right\|_{Q_{a}}^{2} + \min_{b \in S_{I}} \left\| \hat{b}(a) - b \right\|_{Q_{\hat{b}(a)}}^{2} \right)$$
(20)

将式(20)最后一项记为
$$\tilde{b}(a) = \min_{b \in S_I} \left\| \hat{b}(a) - b \right\|_{\mathcal{Q}_{\hat{b}(a)}}^2$$
 (21)

关于该式的快速算法参见文献[7]。式(21)的解为

$$\breve{a} = \min_{a \in \mathbb{Z}^{d}} \left(\left\| \hat{a} - a \right\|_{Q_{\hat{a}}}^{2} + \left\| \hat{b}(a) - \breve{b}(a) \right\|_{Q_{\hat{b}(a)}}^{2} \right)$$
(22)

$$\check{b} = \check{b}(\check{a}) \tag{23}$$

基于基线约束的LAMBDA算法(BC—LAMBDA)是求解

式(22)的最有效的搜索算法,其是在无约束LAMBDA算法^[8]的基础上考虑了基线长度约束,使其估计更为准确。

2.3 姿态求解

固定整周模糊度后得到的基线坐标 \tilde{b} 在东北天坐标系 下表示为 $\tilde{b} = (b_F \quad b_N \quad b_U)^T$,则最终的航向角计算为

$$\psi(b) = \arctan(b_E/b_N)$$
(24)
俯仰角计算为

$$\theta(b) = \arctan\left(b_U / \sqrt{(b_N)^2 + (b_E)^2}\right)$$
(25)

2.4 姿态角精度

载体的姿态是根据基线坐标得到的,由于估计的基线坐标是含有误差的,所以该误差会传播到由其解算得到的航向 角和俯仰角中。为了研究姿态角的估计精度,需要建立该误 差传播模型。首先,基线坐标在东北天坐标系下可以表述为

$$b = \begin{bmatrix} b_E \\ b_N \\ b_U \end{bmatrix} = \begin{bmatrix} l \sin\psi \cos\theta \\ l\cos\psi \cos\theta \\ l\sin\theta \end{bmatrix}$$
(26)

则对上述表达式进行线性化处理并应用方差传播定律, 则可以得到如下姿态角精度表达式¹⁹¹

$$\sigma_{\delta\psi}^{2} = \frac{(\cos\psi_{0})^{2}\sigma_{E}^{2} + (\sin\psi_{0})^{2}\sigma_{N}^{2}}{l_{0}^{2}(\cos\theta_{0})^{2}}$$
(27)

$$\sigma_{\delta\theta}^{2} = \frac{(\sin\psi_{0}\sin\theta_{0})^{2}\sigma_{E}^{2} + (\cos\psi_{0}\sin\theta_{0})^{2}\sigma_{N}^{2} + (\cos\theta_{0})^{2}\sigma_{U}^{2}}{l_{0}^{2}}$$
(28)

$$\sigma_{\delta l}^{2} = (\sin\psi_{0}\sin\theta_{0})^{2}\sigma_{E}^{2} + (\cos\psi_{0}\cos\theta_{0})^{2}\sigma_{N}^{2} + (\sin\theta_{0})^{2}\sigma_{U}^{2}$$
(29)

根据式(27)、式(28)、式(29)可知,姿态角的估计误差随 着基线长度的增加而减小,基线长度的估计误差与基线长度 本身没有关系。航向角的精度与基线垂直方向的估计误差无 关,俯仰角的精度与水平向和垂直向的估计误差都有关系, 并且二者精度与姿态角有关,即与基线向量的当前指向有 关,文献[9]给出了基线不同指向下的姿态角精度的典型值。 此外,姿态角的估计精度与基线东北天三个分量的估计精度 有关,即与 $Q_{i(a)}$ 阵的对角线元素值密切相关。如果能够减小 该对角线元素值,则可以提高姿态角的估计精度。

3 基线估计精度分析

3.1 单频观测下的基线精度分析

由上述单频段载波相位和码联合解算的数学模型可知, 一旦整周模糊度求解完毕,可以带入原数学模型采用式(16) 估计基线向量,根据方差协方差传播定律可以推知其相应的 方差协方差矩阵为

$$Q_{\hat{b}(a)} = \left(\left(\frac{1}{2^{-2}}_{,i}^{2} + \frac{1}{2^{-2}}_{,i}^{2} \right) (H_{i}^{T} Q^{-1} H_{i}) \right)^{-1}$$
(30)

由式(7)中矩阵的定义进一步化简可得 $Q_{i(c)} = \lambda_i^2 \omega_i^{-1} (E^T D^T (DD^T)^{-1} DE)^{-1}$

其中
$$\omega_i = \left(\frac{1}{2\sigma_{\varphi,i}^2} + \frac{1}{2\sigma_{\varphi,i}^2}\right)$$

若令*T*=*DT*(*DDT*)⁻¹*D*,则上式简化为
 $Q_{\hat{b}(a)} = {}^2_i {}^{-1}_i (E^T T E)^{-1}$ (32)

(31)

其系数可以进一步整理得到

$$\lambda_{i}^{2}\omega_{i}^{-1} = 2\lambda_{i}^{2} \frac{\sigma_{\varphi,i}^{2}}{1 + \frac{\sigma_{\varphi,i}^{2}}{\sigma_{\varphi,i}^{2}}}$$
(33)

由于码的观测精度远远小于载波相位的测量精度,故上 式可以近似等于

$$Q_{\hat{b}(a)} = 2 \frac{2}{i} \frac{2}{j} (E^{\mathrm{T}}TE)^{-1}$$
(34)

该式表明,基线坐标的精度主要由两部分精度决定,其 一是观测数据的精度和载波波长,体现在式(34)的系数上;其 二是卫星几何分布状况,体现在式(34)的矩阵部分。由于卫星 的几何分布是由卫星运动决定的,接收机无法改变,因此可 以采用多个频段的接收机和更高观测精度的观测数据提高 定姿精度。

3.2 多频观测下的基线精度分析

对于多频GNSS观测模型,则根据式(10)可以推知

$$Q_{\hat{b}(a)} = \left(\sum_{i=1}^{n} \omega_i \left(H_i^{\mathrm{T}} Q^{-1} H_i\right)\right)^{-1} = \left(\sum_{i=1}^{n} \lambda_i^{-2} \omega_i\right)^{-1} \left(E^{\mathrm{T}} T E\right)^{-1}$$
(35)

忽略码对基线精度的贡献,则类似式(34)可得到

$$Q_{\hat{\boldsymbol{b}}(\boldsymbol{a})} = \left(\sum_{i=1}^{n} \frac{1}{2\sigma_{\varphi,i}^{2}} (H_{i}^{\mathrm{T}} Q^{-1} H_{i})\right)^{-1} = \left(\sum_{i=1}^{n} \frac{1}{\lambda_{i}^{2}} \frac{1}{2\sigma_{\varphi,i}^{2}}\right)^{-1} (E^{\mathrm{T}} T E)^{-1} (36)$$

假设所有观测频段的载波相位测量精度相同,以周计 算,即

$$\sigma_{\varphi,1}^{2} = \sigma_{\varphi,2}^{2} = \sigma_{\varphi,3}^{2}$$
(37)

则式(36)可以简化为

$$Q_{\hat{b}(a)} = 2^{-2} \int_{i}^{n} \left(\sum_{i=1}^{n} \frac{1}{i} \right)^{-1} \left(E^{\mathrm{T}} T E \right)^{-1}$$
(38)

式(38)表明,多个频段的观测值可以减小观测误差,三 频观测相比于单频模型的基线误差比值为

$$\eta = \frac{\lambda_1^2}{\left(\sum_{i=1}^3 \frac{1}{\lambda_i^2}\right)^{-1}} = 1 + \frac{\lambda_1^2}{\lambda_2^2} + \frac{\lambda_1^2}{\lambda_3^2}$$
(39)

由于 ${}_{1}^{2}/{}_{2}^{2} = f_{2}^{2}/f_{1}^{2}$ 并且 $\lambda_{1}^{2}/\lambda_{5}^{2} = f_{5}^{2}/f_{1}^{2}$,故对于**GPS**的三频观 测,根据表1中的频率指标,则该可以计算该误差比值

$$\eta = 1 + \left(\frac{120}{154}\right)^2 + \left(\frac{115}{154}\right)^2 = 2.1648 \tag{40}$$

即GPS三频观测的定姿精度方差是单频观测的0.4619, 即其标准差是单频观测的0.6796,精度约提高32%。同理可 得,双频观测定姿精度的标准差为单频观测的78.8%,精度 大约提高21%。对于Galileo的三频观测而言,则计算误差比 值为

$$\eta = 1 + \left(\frac{115}{154}\right)^2 + \left(\frac{118}{154}\right)^2 = 2.1448$$
(41)

即Galileo三频观测的定姿精度方差是单频观测的0.4662, 即其标准差是单频观测的0.6828,精度约提高31.7%。同理 可得双频观测定姿精度的标准差为单频观测的80.12%,精 度大约提高20%。

4 仿真验证

为了进一步验证多频观测对定姿精度的改善程度,以 GPS定姿为例,进行了单历元定姿的仿真实验。多频定姿的 仿真数据采用荷兰Delft理工大学研发的VISUAL模拟器仿真 软件^[10]生成,该软件可以根据真实星历数据和模拟的基线 坐标生成三频GPS的载波相位和码的观测数据,在整周模 糊度解算和GNSS相对定位和单历元定姿的研究中被广泛采 用^[7]。仿真实验数据的整周模糊度解算方法采用CLAMBDA 算法,剔除不正确的整周模糊度解后,再进行精度评估。 为了便于分析单位基线长度下的定姿精度,基线长度选为1

米,观测历元个数为5000个。两天线所构成的基线矢量在 东北天坐标下为(100) T,即航向角真值为90°,俯仰角真值 为0°。载波相位观测噪声设为0.02周,可见星数目为8颗, 其在观测时间段内的分布如图1所示。仅用GPS L1单频单历 元定姿的结果如图2所示,采用GPS L1/L2/L5三频定姿的结 果如图3所示。

对比图2和图3可知, 三频观测对航向角和俯仰角的精

图3 L1/L2/L5 三频单历元定姿结果

图1 卫星分布图

表2 GPS多频定姿的姿态角结果

频率	均值	ī(°)	标准差(°)		
组合	航向	俯仰	航向	俯仰	
L1	89.9982	-0.0016	0.2846	0.5818	
L1\L2	89.9967	-0.0108	0.2223	0.4509	
L1\L2\L5	89.9943	-0.0094	0.1936	0.3888	

表3 GPS多频定姿的基线坐标均值与标准差

频率 组合	均值(m)			标准差 (m)		
	b _E	b _N	b _u	b _E	b _N	b _u
L1	0.99993	0.00003	-0.00001	0.00345	0.00497	0.01015
L1\L2	0.99992	0.00006	-0.00018	0.00279	0.00388	0.00787
L1\L2\L5	0.99999	0.00009	-0.00016	0.00237	0.00338	0.00679

method for single epoch, single frequency attitude determination applications[C] // Proceedings of ION-GPS, Forth Worth, Texas, USA: 2007-9: 2962-2973.

[3] Misra P, Enge P. Global positioning system: signals, measurements, and

度有明显改善。GPS各种频率组合的姿态角解算结果如表1 所示,对于航向角,双频和三频观测的误差分别为单频的 0.7811和0.6803,对于俯仰角,双频和三频观测的误差分别 为单频的0.7750和0.6683,均与理论值相吻合。

由于针对同一条基线采用不同方法对比姿态角精度, 其精度差异的影响因素主要由各个基线坐标的标准差决 定。姿态角和基线坐标解算结果的统计参数分别如表2和表 3所示。由表2可以看出,其均值非常接近真值,这是由观 测噪声的高斯特性决定的。由表3可以看出,多频观测可以 提高各个基线坐标的估计精度,且其精度提高程度决定了 姿态角精度的改善程度。对于东北天三个坐标分量而言, 双频观测可以将精度提高约21%,三频观测可以将精度提高 32%,参见式(40)。

此外,还可以看出无论哪种频率组合,由于GPS卫星 分布均在地理水平面之上,导致天向误差明显大于水平向 观测误差,这就决定了航向角的精度要优于俯仰角的估计 精度。

5 结论

基于GNSS的单历元定姿算法是目前姿态测量领域的研究热点,而定姿精度是该技术的一个关键指标。本文基于 双差观测模型,对单频和多频观测下的定姿精度进行了理 论分析,指出了影响定姿精度的各种因素,着重分析了多 频观测相比于单频观测对定姿精度的提高程度,并采用仿 真实验进行了验证。结果表明,利用GNSS多频观测值提高 姿态解算精度具有重要的意义。

参考文献

[1] Wang Y Q, Zhan X Q, Zhang Y H. Improved ambiguity function method based on analytical resolution for GPS attitude determination[J]. Measurement Science and Technology, 2007, 18(9):2986–2990.

[2] Buist P J. The baseline constrained LAMBDA

performance [M]. Lincoln MA: 2nd ed. Ganga-Jamuna Press, 2006, 219-229.

[4] Teunissen P J G.The LAMBDA method for the GNSS compass[J]. Artificial Satellites, 2006, 41(3): 89–103.

[5] Teunissen P J G.Integer least-squares theory for the GNSS compass[J]. Journal of Geodesy, Springer, 2010.

[6] Chansik P, Teunissen P J G. Integer least squares with quadratic equality constraints and its application to GNSS attitude determination systems[J]. International Journal of Control, Automation and Systems, 2009, 7(4):566–576.

[7] Teunissen P J G, Giorgi G, Buist P J. Testing of a new single-frequency GNSS carrier-phase compass method: land, ship and aircraft experiments [J]. GPS Solutions.2010, 15(1), 15–28.

[8] Gabriele G, Gourlay T, Teunissen P. Carrier phase ambiguity resolution for ship attitude determination and dynamic draught[C] // FIG Congress 2010, Facing the Challenges-Building the Capacity, Sydney: 2010–4.

[9] Park C, Kim I, Jee G, Lee J. An error analysis of GPS compass[C]. Proceedings of the 36th SICE Annual Conference, 1997, 1037–1042.

[10] Verhagen S. Visualization of GNSS-related design parameters: manual for the matlab user interface VISUAL[EB/ OL]. http://www.lrtudelftnl/ mpg,2006.

作者简介

陈万通,博士研究生,主要研究方向为卫星导航、 GNSS姿态解算。