

液体推进剂的热裂解生焦过程研究*

Research on the Pyrolysis and Coking Process of Liquid Propellant

肖娟 郭永胜 龚先杰 方文军 许莉/浙江大学化学系

摘 要:研究了液体推进剂模型燃料正十一烷在575~700℃、0.1~5.0MPa条件下的热裂解生焦情况,通过气相色谱法 (GC)和气相色谱-质谱法(GC-MS)对裂解气液相产物进行了分析,并根据分析结果推测了可能的裂解结焦机理。气体 产物主要有甲烷、乙烷、乙烯、丙烷、丙烯、丁烷和丁烯,裂解液中则含有烯烃类、环烃类、苯类和多环芳烃等化合物。 随温度和压力的升高,反应程度明显加深,产物中芳烃及多环芳烃类化合物含量显著增加,更容易发生结焦沉积、堵管等 现象。

Abstract: The thermal decomposition and coking of *n*-undecane were studied at temperatures from 575 to 700°C and in the pressure range of 0.1–5.0 MPa. The gaseous and liquid components were determined by gas chromatography and gas chromatography-mass spectrometry. Results show that some olefins, cyclic hydrocarbon, benzene and polycyclic aromatic hydrocarbon can be found in the liquid products, the major gaseous products including methane, ethane, ethene, propane, propene, butane and butene. It can also be found that increased temperature and pressure can deepen the reaction and produce more aromatic and polycyclic aromatic hydrocarbon, making it easier to coke and even block the pipeline. According to the analysis results, a probable mechanism for decomposition and coking was proposed.

关键词:热裂解,液体推进剂,正十一烷 Keywords:pyrolysis,liquid propellant,*n*-undecane

0 引言

飞行器高速飞行时面临严重的热 管理问题,如不采取有效冷却措施,会影 响飞行器正常运转,造成严重后果^[1-3]。 出于机身设计一体化的考虑,利用吸热 型碳氢燃料作为可燃冷却剂,是解决这 一问题的有效途径之一^[4-7]。吸热型碳 氢燃料不仅具有较高的物理吸热能力, 还可以在到达燃烧室之前通过热裂解、 催化裂解以及催化脱氢等吸热反应提 供附加化学热沉^[8-13]来解决飞行器的冷 却问题。

为了满足超声速燃烧的需要,高超 声速飞行器推进系统中的燃料必须高速 输送,这使燃料在系统中的压力急剧变 化,甚至超过了自身的临界压力,当燃料 发生化学反应时,体系压力还会随之变 化。可见,吸热型碳氢燃料在服务于高超 声速飞行器时,工作压力将在一个较宽 的范围内变化。鉴于这一客观事实,为了 给碳氢燃料的改性及实际应用提供有 效的实验数据和参考信息,本文选用正 十一烷为吸热型碳氢燃料模型化合物, 详细探索了不同温度、压力条件下直链 烃化合物的热裂解及结焦性能。

1 **实验部分** 1.1 **原**料 正十一烷(临界温度T_c=365.74℃, 临界压力p_c=1.98MPa)纯度>99.0%,由 抚顺北源精细化工有限公司生产。

1.2 裂解装置

实验装置主要包括进样、预热、 反应和产物分析四个系统,如图1所 示。该装置可用于对燃料在不同温 度、不同压力条件下的热裂解实验研 究。反应管材料为GH3128,规格为 φ3×1mm,加热炉温度由708P型人 工智能温度控制器控制。预热器温度 设定为300℃,反应温度范围为575 ~700℃,压力控制范围为0.1~5.0 MPa, 燃料进样速度为1mL/min。每次实验之 前,氮气吹扫体系10min,之后由高压 平流泵将燃料输入到反应体系内进行

* 基金项目:航空科学基金(2009ZH76008)项目资助。

热裂解反应,并采集裂解产物样品进 行相应表征。

1.3 产物分析与表征

采用GC-9790气相色谱法对气 相产物进行分析,选用30 m PLOT毛 细管分离柱和FID检测器。液相产物 分析条件为:气相色谱-质谱联用仪 (Agilent 7890 /5975C GC/MS),HP-5MS (30 m × 0.25 mm × 0.25μm)毛细 管柱,离子源为EI 源,电子能量70 eV, 扫描范围35~450 amu。

2 结果与讨论 2.1气相产物分布

通过气相色谱来分析正十一烷裂 解反应的气相产物,分析结果表明气 相产物主要包括甲烷、乙烷、乙烯、丙 烷、丙烯和丁烷、丁烯。将这七类主要 的气相产物归一化计算得到每种物质 在总气相产物中的摩尔含量。图2给出 了正十一烷在4.0MPa条件下进行热裂 解反应时,气相产物中各组分的摩尔 收率随温度的变化。从图中可以看出, 正十一烷裂解气中含量较高的乙烯和

(1) 原料;(2) 平流泵;(3) 针型阀;(4)压力表;(5) 预热炉;(6) 反应炉;(7) 冷凝管;(8) 过滤
头;(9) 背压阀;(10) 气液分离器;(11) 分析系统;(12) 氮气;(13) 压力控制器;(14) 热电偶;
(15) 控温仪

图1 裂解反应装置图

图2 正十一烷4.0 MPa下裂解的气相产物分布

图3 正十一烷675℃裂解的气相产物分布

乙烷量均随温度的升高而降低,随温 度升高而出现明显增长的两种气体是 丙烯和丁烯。总体来看,温度变化对气 相产物分布的影响不是很明显。

正十一烷在675℃下裂解气相产 物分布随压力的变化情况如图3所示。 从图中可以看出,压力对气相产物分 布影响相对较大,当反应压力从常压 升至2.2 MPa时,这一趋势尤其明显。 当压力高于2.2 MPa时气相产物分布 变化不大,这一现象也与压力对转化 率和气体收率的影响规律相吻合。正 十一烷裂解气中产量较高的乙烯和甲 烷均随压力升高而降低;其他气体如 乙烷、丙烷、丙烯、丁烷和丁烯则随压 力的升高而出现增长的趋势。

裂解产物中烯烃含量越高,燃料 裂解的化学吸热能力就越强。通过不 同条件下裂解气相产物的烯烃选择性 变化可以一定程度地掌握裂解吸热能 力的变化规律。不同压力条件下,烯烃 的选择性随温度的变化趋势如图4所 示。常压条件下的烯烃选择性与高压 条件下情况存在明显差异。常压条件 下,气体的烯烃选择性随温度的升高

而增加;高压条件下烯烃选择性随温度的升高先增加后降低,且 压力越大,拐点温度越低。正构烷烃裂解的小分子产物多是通过 母体自由基、二级自由基等的β-断裂生成的,随着压力的增加, 体系内双分子反应几率增加,自由基可以通过分子间的夺氢反 应生成饱和的烷烃,从而导致产物中烯烃选择性的降低。

2.2 液相产物分析

图4 正十一烷裂解气体的烯烃选择性

温度/℃	575	600	625	650	675	700
链烷烃/%	91.8104	88.2401	78.8336	68.7532	56.0534	40.8316
烯烃类/%	5.4256	3.3565	17.2062	15.0399	17.5756	14.6159
环烃类/%	2.7639	8.4033	3.9603	15.3207	21.7082	25.3475
苯类/%	0	0	0	0.8861	4.4807	15.6405
多环芳烃/%	0	0	0	0	0.1823	3.5642

表1 正十一烷4.0MPa裂解的液相产物分布

表2 正十一烷675℃裂解的液相产物分布

压力/MPa	0.1	2.2	3	4	5
链烷烃/%	96.3765	71.1912	68.2573	56.0534	48.3337
烯烃类/%	3.0785	14.5444	15.1762	17.5756	18.8186
环烃类/%	0.5451	13.5572	14.9987	21.7082	25.2041
苯类/%	0	0.7072	1.355	4.4807	6.3281
多环芳烃/%	0	0	0	0.1823	1.3156

不同反应条件下裂解的液相产物经GC-MS分析 得到,表1和表2分别列出的4.0MPa不同温度条件下和 675℃不同压力条件下的液相产物分布。从中可见,随温 度和压力的升高,正十一烷裂解液中芳烃和多环芳烃呈 现明显的增加趋势。这主要是由于二次反应所致,在热 裂解反应过程中,正十一烷首先裂解生成烯烃,烯烃能 进一步脱氢生成炔烃和二烯烃,继而发生双烯加成生成 环烃,随温度压力的进一步升高,二次反应更加剧烈,环 烃进一步脱氢最终生成芳烃和多环芳烃类化合物。

2.3 裂解结焦机理推测

碳氢燃料在高温高压条件下的裂解是一个极其复杂的过程,正构烷烃裂解过程中主要发生自由基反应和分子反应。根据对气液相产物的分析,推出了可能的裂解结焦反应机理,如图5所示。

链状烷烃裂解的开始阶段是自由基反应的链引发 过程,通常是烷烃分子中的C-C键发生均裂生成两个 自由基。C-H键的离解能比C-C键大,因此链引发反 应中C-C键断裂的可能性较大。链引发产生的自由基 通过夺氢反应、分解反应和加成反应进行链传递,不断 产生新的自由基,这也直接造成了裂解产物的多样性。 温度和压力越高,自由基反应越剧烈,也就增加了裂解 产物的种类。有些链长合适的自由基容易发生成环反 应,带有自由基的环烷烃可进一步脱氢生成环烯烃,甚 至芳香族化合物。裂解产生的小分子烯烃和共轭烯烃 可发生环加成反应生成环烃,环烃通过不断的脱氢反 应和环加成反应产生了多环贫氢化合物——结焦前躯 体,这些多环贫氢化合物可进一步脱氢产生结焦,发生 堵管现象。

分析结果也表明随着裂解温度和压力的升高,气 相产物中的烯烃含量降低,而裂解液相产物中的芳烃 和多环芳烃的含量则明显升高。

3 结论

考察了模型燃料正十一烷在575~700℃,0.1~5.0 MPa条件下的热裂解情况,根据GC和GC-MS对裂解气 液相产物的分析结果,推测了可能的裂解及结焦反应机 理。裂解气中主要成分有甲烷、乙烷、乙烯、丙烷、丙烯、 丁烷和丁烯等,且气体产物的烯烃选择性随压力的升高 而降低,液相产物中除链烷烃外还包括烯烃类、环烃类、 苯类和多环芳烃,且温度和压力越高,芳烃及多环芳烃

图5 正十一烷可能的裂解结焦过程 含量越大,越容易发生结焦沉积甚至 堵管现象。

AST

参考文献

[1] Ahern J E. Thermal management

of air-breathing propulsion system[C]. AIAA, Aerospace Science Meeting and Exhibit, 30th, Reno, NV, 1992, 1.

[2] Dennis H P, Stuart C J. Thermal management for a mach 5 cruise aircraft

using endothermic fuel[C]. AIAA, Aircraft Design, Systems and Operations Conference, Dayton, OH, 1990, 9.

[3] Robert F F, Pratt W. Hydrocarbon scramjet propulsion system development [R]. AIAA-1999-4922.

[4] 郭永胜,何龙,蒋武,等. 吸热型 碳氢燃料裂解催化剂结焦研究[J]. 燃料 化学学报, 2002, 30 (6): 514-518.

[5] 张波,王彬成,林瑞森. 吸热型 碳氢燃料的热裂化及催化裂化[J]. 石油 学报:石油加工,2002,18(4):85-89.

[6] 郭正. 航天飞机防热系统材料 进展[J]. 中国航天, 1993 (5): 44-46.

[7] Edwatds T. USAF supercritical hydrocarbon fuels interests[R]. AIAA-1993-0807.

[8] Edwards T, Harrison W E. Properties and producibility of advanced jet fuels [R]. AIAA- 1997-2848.

[9] Cook R T. Advanced cooling techniques for high pressure hydrocarbon -fueled rocket engines[R]. AIAA-1980-1266.

[10] Ruhl R, Stephen H, Kenyon M. Endothermic reaction process, US Patent 5565009[P]. 1996.

[11] Spadaccini L J, Marteney P J, Meredith B. Method of cooling with as endothermic fuel. US Patent 5151171[P]. 1992.

[12] Chung H S, Chen C S H, Kremer R A, Boulton J R. Recent developments in high-energy density liquid hydrocarbon fuels[J]. Energy & Fuels, 1999, 13(3): 641-649.

作者简介

肖娟,硕士研究生,研究方向为碳 氢燃料的裂解与结焦。

> 2013/1 航空科学技术 85 RONAUTICAL SCIENCE & TECHNOLOGY