

涡轮级间燃烧室技术的研究现状与发展趋势*

The Status and Direction of Inter-Stage Turbine Burner Technology

尚守堂^{1,2} 程明^{1,2} 刘殿春¹ 谢鹏福² 罗思博² 李锋² 1 中航工业沈阳发动机设计研究所 2 北京航空航天大学能源动力学院

摘 要:介绍了涡轮级间燃烧室的工作原理及发展趋势。研究表明,加入涡轮级间燃烧室可提高发动机推重比 和热效率,减低NO_x等污染物排放。

关键词:涡轮级间燃烧室;低压涡轮前温度;发动机性能 Keywords: inter-stage turbine burner; low-pressure turbine's inlet temperature; engine performance

0引言

对于常规航空涡轮喷气发动机来 说,高压涡轮进口温度一般较高,燃烧室 出口的温度常受到涡轮导向器材料耐 温极限的限制,但随着燃气通过高压涡 轮作功后,进入低压涡轮的温度会降低 300~500℃。因此,对于低压涡轮来说, 气流温度还有提高的裕度,如果能供油 燃烧,提高低压涡轮进口温度,则可使 发动机的循环功加大,既提高推力又可 使耗油率保持较低的水平。此燃烧室即 为涡轮级间燃烧室。

涡轮级间燃烧室(ITB)是在高低压 涡轮级间加入一个新的燃烧室。与加力 燃烧室一样,它在主燃烧室(MB)的基 础上为发动机提供了更多的加热量,但 其油耗却远低于加力燃烧室。发动机中 采用加力燃烧室可以增加单位推力,但 耗油率增长速度太快,因而不能长时间 使用。采用ITB不仅可提高发动机单位 推力,耗油率保持较低的水平,而且可 以通过改变设计参数,如压气机压比、 风扇压比、涵道比等提高其总体性能。

1 涡轮级间燃烧室的工作原理

目前航空发动机的热力循环大都 采用布雷顿循环(Brayton Cycle)。理想的 布雷顿循环包括绝热压缩、等压燃烧、绝 热膨胀、等压放热四个可逆过程。其热效 率取决于循环增压比,在一定增温比下 提高增压比可使热效率达到一个最大 值,循环增温比越大,实际循环热效率越 高,即增加涡轮前温度可提高热效率。但 是这些就要求提高压气机的增压比和提 高涡轮前温度。相应地要求材料有很好 的强度、很好的耐热性以及需要先进的 冷却技术。从热力循环角度分析,提高发 动机的效率有以下几种途径。

 1)回热,把定压膨胀的热量重新 用于加热压缩后的空气从而提高效率。
但由于回热需要在发动机上增加部附件,而且回热装置的重量很大,

这是航空飞行器所不容许的。

2) 分级压缩,中间冷却。

3)分级膨胀,中间再热¹⁹。
当分级压缩中间冷却和分
级膨胀中间再热的次数趋于无

穷时,整个热力循环可以看成是概括性 卡诺循环,其效率可达到最大。

近年来,等温发动机的高效率等优 点越来越引起人们的重视,对等温循环 发动机的研究越来越深入,提出了ITB 等概念以期实现膨胀阶段的多级膨胀 中间再热。传统的发动机只是对压气机 和涡轮分级,并未对其进行中间冷却和 中间再热,引入ITB的概念相当于在膨 胀阶段增加一个再热过程,通过在ITB 中加入燃料与高温燃气混合,在ITB中 组织燃烧产生能量使得温度升高。级间 燃烧室是在膨胀阶段通过再热提高出 口温度,从而在达到相同热效率的情况 下,降低涡轮前温度(如图1所示)。

与同等发动机相比,带有ITB的发 动机推力在高马赫数下明显提高,而燃

* 航空科学基金资助项目(2010ZB06009)

图1 带有ITB的发动机

图2 带ITB的发动机推力与Ma数的关系

图3 带ITB发动机的耗油率随Ma数的变化

油消耗率几乎不变。在总当量比相同时,ITB的燃烧火焰长度是常规燃烧室的一半,火焰在ITB中的传播速率增强,使得反应时间变短,所以具有减少NO_x排放等优点^[1]。

ITB又称第二燃烧室,其作用不仅 能使发动机的性能得到提高,而且能提 高发动机的安全性,当一个燃烧室熄火 后另一燃烧室还能继续工作,提高了发 动机的可靠性^[2]。

2 涡轮级间燃烧室的国内外研 究概况

目前国外对ITB及相关发动机进 行了大量研究,包括加入ITB对发动机 总体的性能计算和ITB的结构设计研究 等。国内在小发动机应用方面,已经开 展了ITB全环形燃烧室的试验研究。在 大发动机方面,初步开展了级间燃烧室 的设计和数值仿真,研究工作还需深入

开展。

国外对ITB的研究成果, 以美国空军实验室(AFRL)研 究的UCC系列燃烧室最为著 名,为我国国内ITB的结构设 计提供了设计经验。

2.1 ITB**的发展历程**

级间燃烧的概念可以追 溯到1948年瑞士的BBC Brown Boveri公司提出的两燃烧室燃 气轮机的概念^[3],1990年,ABB 公司将其成功运用到GT24/ GT26燃气轮机中^[4]。但这个新 概念并未运用到航空领域中。 1997年Sirignano等提出Turbine Burner的概念^[1],提出在涡轮 叶片之间的通道中燃烧的新 概念。2001年,Sirignano和Liu 在Turbine Burner的基础上 提出ITB的概念。由于ITB是 这间燃烧,所以相对于Turbine

在涡轮级间燃烧,所以相对于Turbine Burner,其更简单,容易实现^[5]。

目前级间燃烧室的设计有两种方案:一种是级间燃烧室位于高压涡轮和 低压涡轮之间的过渡段,这种叫ITB^[6] (NASA的方案)。其燃烧热循环方式被 认为是定压燃烧;另一种是燃烧室位于 低压涡轮转子叶片之间的通道内,这种 级间燃烧室叫做UCC,有时也叫ITB^[7] (AFRL的方案)。其燃烧热循环方式被 认为是定温燃烧^[8]。

位于高压涡轮和低压涡轮之间的 过渡通道内的ITB燃烧室模型,由于目 前的多级发动机的高低压涡轮之间都 有一定距离的过渡通道,因此这种发 动机可以在原来的基础上稍加改进即 可,而且对发动机的长度等影响不大。 这种形式的发动机在理论上是认为最 经济最现实的一种,对ITB的研究大多 数是基于这种形式的发动机。近年来, NASA和其合作单位对其进行了大量 研究。

另一种ITB是燃烧室位于涡轮叶 片之间的通道内,这种形式的ITB要求 不改变发动机长度的情况下达到提高 发动机性能的效果。以AFRL为主的研 究人员在这种形式的燃烧室上做了大 量研究,这种ITB是基于Sirignano提出 来的TC概念。由于这种ITB在涡轮叶片 中燃烧,燃烧室长度更短,据文献可知 只有3英寸长的轴向距离,按传统的燃 烧在轴向空间的理念,要在这么短的距 离稳定燃烧是比较困难的,但是AFRL 通过基于Lewis的研究成果并结合驻涡 燃烧室的特点,设计出来了UCC这种超 紧凑型燃烧室,不仅能够使火焰稳定燃 烧,而且能够达到设计性能要求。

2.2 ITB对发动机总体性能的影响

加入ITB后对发动机总体性能以 及各部件有着重要的影响。密西根科 技大学和NASA等机构对其进行了详 细研究。研究表明,发动机加入级间燃 烧室后,相对于不加级间燃烧室的发动 机,推力增加,而且加ITB的发动机和不 加ITB发动机的推力之差随着马赫数的 增加而增大(如图2所示)。在ITB中由于 需要加入燃料,因此,加ITB的发动机相 对不加ITB的发动机燃油消耗要增大。 然而增加ITB仍然有益,这是因为增加 ITB带来的推力增加要大于在常规发动 机中燃油消耗对应的推力。研究发现在 马赫数大于1.1时,对于发动机性能提 高明显,这时燃油消耗不增加,而推力 增加随着马赫数的增加越来越大(如图 3所示)。这些结论对于在高马赫数下飞 行的军用发动机有着重要的意义。

国内对ITB的研究只在这部分进行 了部分研究,如北京航空航天大学李锋 课题组,南京航空航天大学潘旭、葛宁 等人对ITB发动机设计点性能进行了研 究^[9],西北工业大学骆广骑等人对多级 涡轮燃烧室和常规发动机性能比较^[10]以 及循环参数对性能影响进行了研究^[11], 第二炮兵第四研究所的齐少军等人也 对ITB总体性能进行了研究^[12]。

2.3 ITB的结构设计所采用的理论

目前的ITB除了上述放置在高低压 涡轮之间的通道中和集成在低压涡轮 导向叶片上两种结构形式外,还有一种 也可以称为级间燃烧室的形式是在低 压涡轮后面的支板上集成燃烧室,这样 可以缩短加力燃烧室甚至去掉加力燃 烧室,这种级间燃烧室有时也称之为一 体化加力燃烧室^[13]。

目前研究最多的是集成在低压涡 轮静止叶片上的超紧凑型ITB结构设计 (即UCC),它使整个燃烧系统与涡轮组 合在一块。

由于UCC结构紧凑,其燃烧室的空间相对来说较小,要在这么狭小的空间中充分燃烧,使用传统的燃烧室的组织燃烧形式比较难实现的,传统的发动机燃烧室通过旋流器产生回流区稳定火焰,其火焰为轴向的,这在涡轮级间燃烧中火焰将会超出燃烧室的,因此必须寻求一种能够使燃烧速率加快,使火焰变短的一种燃烧形式。目前在涡轮级间燃烧室中采用两种燃烧充分的技术,一种是g-loading技术^[14],另一种是TVC(驻涡燃烧)技术。

1) g-loading原理

该燃烧技术是由Lewis发现的, Lewis研究发现离心加速度在火焰传播 中起着很大的作用。他利用一个离心燃 烧器,把离心加速度增大到10000g,观 察到火焰速度比常规湍流火焰增大近 四倍。在对其做了大量试验后得到了很 多数据,基于这些结果,Lewis认为火焰 传播有三种模式:

a) 通过导热和辐射扩散的层流燃

烧;

b)通过小的火焰微团湍流传输到 未燃混合物的湍流燃烧;

c) 燃烧燃气由于波动通过新鲜混 气并且把火焰扩散开去的气泡燃烧。

Lewis通过试验发现对于丙烷空气 混合物,当离心加速度增大到200g时, 火焰传播率仍接近常数18ft/sec,对于离 心加速度在500g~3500g范围内火焰传 播速度和离心加速度满足*S_L*∝*g*^{1/2}的关 系。试验发现,火焰速率随离心加速度 的增加而增加,增加到3000g~6000g后 火焰突然降低直至熄灭。这些观测结果 明显要大于常规湍流火焰速度,例如, 最大层流火焰速度为0.43m/s而相应的 湍流为2m/s,依据Lewis的数据在高的 g-loading下火焰速率是混合湍流火焰 的3~4倍。

Lewis把这个现象归结为"气泡" 或者是涡跑到火焰锋面的前面(如图4 所示)。

在图4的左图中,气泡或者涡超过

图4 g-loading原理示意图

图5 TVC结构示意图

湍流火焰速度和涡速的火焰传播。右图 为涡速低于湍流火焰速度和湍流火焰 速度时的混合传播示意图。

2) TVC原理

驻涡燃烧室最初由 AFRL和通用电 气公司提出并发展起来的。驻涡燃烧技 术发展到目前的第四代,其技术已经较 成熟。当流体流经一个凹腔时,由于黏性 作用,腔内会产生一个或多个驻涡,而燃 料在驻涡中燃烧具有很好的燃烧特性, 能得到高的燃烧效率、低的贫油吹熄边 界、较少的总压损失等,并且在凹腔壁面 的吹气能够加强驻涡的作用。在凹腔前 壁面底部喷油,后壁面中部吹气,凹腔内 会产生两个驻涡,靠近主流的驻涡用于 主燃,另一个凹腔底部的驻涡用于稳定 的点火,能够使得凹腔驻涡取得更好的 燃烧效果¹¹⁵¹,其结构如图5所示。

3 对ITB结构设计的研究

基于g-loading的理论,AFRL初步 设计了一个简单的UCC,其结构由周向 槽、叶片和叶片上的径向槽组成,结构 图如图6所示。

周向槽为环绕在机匣上的一个环 形凹槽,其功能相当于燃烧室的主燃 区,气流和燃料从槽上孔中喷入,在其 中掺混燃烧,燃烧产物从叶片上的径向 槽导出到主流中去,未充分燃烧的燃料

> 在径向槽中继续燃烧。叶片径 向槽的功用主要是把周向槽 中燃烧产物引入主流中去,同 时未燃燃料在径向槽中贫油 燃烧^[15]。涡轮级间燃烧的所处 位置和结构决定了其拥有很 小的空间。若要在涡轮级间 燃烧室狭小的空间中充分燃 烧,必须使得燃烧的速率增 加或者使得火焰在燃烧室中 驻留的时间变长。

图6 UCC/ITB结构示意图

4 结论

涡轮级间燃烧室(ITB)可明显改善 发动机的性能,是未来高推重比发动机 的发展方向之一。美国有关机构对ITB 及相关发动机进行了大量的研究,并提 出了多种形式的ITB,目前设计研究最 多的是UCC。国内对ITB的设计和数值 仿真开展了初步研究,但研究工作还需 深入开展。

参考文献

[1] Sirignano, et al. Performance Increases for Gas-Turbine Engines Through Combustion Inside the Turbine[J]. Journal of Propulsion and Power, 1999, 15(1):111~118.

[2] Nanhoff, H., et al.GT24 and GT26 Gas-Turbine, Sequential Combustion: the Key to High Efficiencies[J].ABB Review, 1994.

[3] Joos, F., et al. Development of the Sequential-Combustion System for the ABB GT24/GT26 Gas-Turbine Family[J]. ASME International Gas Turbine and Aeroengine Congress and Exhibition, Birmingham, UK, 1996(6): 10~13.

[4] Mayer, A., et al. GT24/26 Advanced Cycle System Power-Plant Progress for the New Millenium[J]. ASME International Gas Turbine and Aeroengine Congress and Exhibition, Indianopolis. USA, 1999(6) :7~10.

[5] Sirignano, et al. Selected Challenges in Jet and Rocket Engine Combustion Research[C]. 33rd AIAA/ ASME/SAE/ASEE Joint Propulsion Conference, Seattle, WA AIAA-97-2701 (1997).

[6] Liu, F., et al. Turbojet and Turbofan Engine Performance Increases Through Turbine Burners[R]. 38th Aerospace Sciences Meeting &Exhibit, Reno, NV, AIAA-2000-0741.

[7] Liu, F., et al. Turbojet and Turbofan Engine Performance Increases through Turbine Burners[J]. Journal of Propulsion and Power, 2001, 17(3), 695–705.

[8] 沈维道, 蒋智敏, 童钓耕. 工程 热力学(第三版)[M]北京:高等教育出 版社, 2006:283~292.

[9] 潘旭, 葛宁.带涡轮燃烧室的涡 扇发动机设计点性能分析[J].燃气涡轮 试验与研究, 2007, 20(3).

[10] 骆广骑,郑九洲,张发启.多级 涡轮级间燃烧室发动机与常规涡轮喷 气发动机性能对比研究[J].弹箭与制导 学报,2009,29(1).

[11] 骆广骑,宋文艳,宋迪源.循环 参数对涡轮级间燃烧室发动机性能影 响[J].弹箭与制导学报,2009,29(5).

[12] 齐少军,蔡元虎,王占学,葛爱 学.用高低压涡轮间补燃提高双轴涡扇 发动机性能[J].推进技术,2002,23(6).

[13] Denver, Colorado A.S., Singh R., Probert S.D, Two-Combustor Engine's Transient Performance[R]. 45th Joint Propulsion Conference &Exhibit ,AIAA 2009–4837 , 2009(8), 2~5.

[14] 马梦颖,金捷,季鹤鸣.航空 发动机加力燃烧室技术及新颖结构 方案[R]. 燃气涡轮试验与研究,2008 ,21(4):55-59.

[15] J.Zelina, J.Ehret, R.D.Hancock, D.T.Shouse, W.M.Roquemore, Ultra– Compact Combustion Technology Using High Swirl for Enhanced Burning Rate[R] AIAA 2002–3725.

[16] A.M.Briones, B.Sekar, H. Thornburg, J.Zelina. Effect of Vane Notch and Ramp Design on the Performance of a Rectanglar Inter-Turbine Burner [R]. AIAA-2010-581.

[17] B.Sekar, H.Thornburg, C. X.Lin, R.J.Holder, J.Zelina, Inter-Turbine-Burner(ITB) Performance with Circumferential Cavity Volume Variations for Cold and Heated Fuel Inject [R]. AIAA 2008-4566.

[18] .Thornburg,B.Sekar,J.Zelina,R. Greenwood,Peter,Skudarnov,Geom etrical Parametric Studies of Inter-Turbine Burner(ITB) for Improved Performance[R]. AIAA 2007-5099.

[19] Balu Sekar, Hugh J. Thornburg, A.M. Briones, J. Zelina, Effect of Trapped Vortex Combustion with Radial Vane Cavity Arrangement on Predicted Inter– Turbine Burner Performance [J]. AIAA 2009–4603.

作者简介

尚守堂,研究员,主要从事航空发 动机燃烧室、排气装置及总体、隐身的 设计研究。