

飞机整体油箱三维瞬态温度场分析

Analysis on 3D Transient Temperature Field of the Aircraft Integrated Oil Tank 任青梅 杨志斌/中国飞机强度研究所

摘 要:介绍了飞机整体油箱三维瞬态温度场分析方法。利用MSC.Patran/Nastran thermal 2001软件,建立 了飞机整体油箱三维瞬态温度场分析有限元模型。模拟了发动机表面与油箱底部的面一面辐射,油箱顶部 对外部空间的热辐射,以及进气道冷空气与油箱底部之间对流换热等多种复杂边界条件。在软件不具备单 元死活功能的条件下,成功模拟了飞行过程中燃油的消耗。本文的研究结果对飞行器油箱部件的热分析具 有一定借鉴意义。

关键词:温度场;热分析;对流;辐射;有限元分析 Keywords: temperature field; thermal analysis; convection; radiation; FEA

0 引言

飞机整体式油箱位于发动机热影 响区,油箱底部受发动机壁面热辐射 作用,导致油箱内燃油温度升高。为 保证燃油温度不超过安全使用温度, 油箱底部需要采取热防护措施,一是 从进气道引入冷却气流对油箱底部进 行对流冷却,二是在油箱底部粘贴隔 热材料。

为确定某飞机油箱底部隔热层材 料类型及厚度,为整体油箱隔热层的 结构设计方案提供理论依据,需要对 其高温区整体油箱温度场进行预估。 本文利用MSC.Patran/Nastran thermal 2001软件的热分析功能,建立了飞机 高温区整体油箱三维温度场分析有限 元模型,模拟发动机表面与油箱底部 之间的热辐射,以及进气道冷空气与 导风罩之间对流换热等多种复杂边界 条件,在软件不具备单元死活功能的 条件下,成功模拟了飞行过程中燃油 的消耗。按飞机飞行时间历程,在考 虑燃油消耗(耗油)和不考虑燃油消 耗(满油)状态下,分别对油箱燃油 温度场进行了瞬态计算,还分析了不 同厚度隔热层对燃油温度的影响,为 确定飞机整体油箱隔热层的结构设计 方案提供理论依据。

1 飞机整体油箱三维瞬态温度 场有限元模型简化

1.1 飞机整体油箱构成及传热机理

飞机整体油箱主要由框、发动机 固定梁、导风罩、油箱底板、隔板、 口盖及蒙皮组成。为防止发动机对油 箱加热,在油箱底板与导风罩之间填 有隔热材料。飞机整体油箱结构剖面 示意图如图1所示。对飞机高温区整体 油箱而言,发动机为主热源,发动机 表面与导风罩及导风罩以下的外蒙皮 之间存在面-面辐射传热方式传给导风罩及 导风罩以下的外蒙皮。传到导风罩及 导风罩以下的外蒙皮。传到导风罩的 热量,通过热传导方式沿整体油箱法 线方向向外传递。由于发动机与导风 罩之间有冷却气流,因此,导风罩与 冷却气流之间有对流换热。

图1 飞机整体油箱结构剖面示意图

1.2 飞机整体油箱有限元网格的划分

1) 框的等效处理

高温区整体油箱结构包括5个框, 除2个隔框外,其余3个框均由腹板和 加强肋组成,而且板上开有许多孔, 框的几何形状很不规则,框的构件材 料也各不相同。因此,在建立框的有 限元网格时,必须对其进行简化。根 据热容不变原则,先将框上材料为钢 的小附件折算为铝材构件,再根据简 化后框的单位体积热容与原结构的单 位体积热容相等原则,折算出框的等 效厚度,框就被等效为由同种材料组 成的等厚度板,用三角形和四边形壳

图2 高温区整体油箱温度场计算有限元网格

图3 油箱燃油分层编号

元来划分网格。

2) 薄壁构件的有限元网格

导风罩、外蒙皮、油箱底板均 为薄壁结构,用四边形壳元来划分 网格。

3) 隔热层和燃油的有限元网 格

由于沿隔热层以及燃油沿厚度 方向温度梯度较大,所以用8节点 体元来划分。

经过以上处理后,高温区整体 油箱温度场计算的有限元网格如图 2所示。

1.3 边界条件的处理

1) 发动机表面的边界条件

发动机表面温度为指定温度, 温度值随坐标而变,但不随时间变 化,发动机表面与导风罩之间还存 在面一面辐射边界条件。

2) 油箱外蒙皮边界条件

飞机整体油箱外蒙皮既存在指 定温度边界条件,又在其下半部分 存在与发动机之间的辐射换热。飞 机整体油箱外蒙皮温度为相应飞行 高度和飞行速度下油箱外蒙皮的附 面层温度,对油箱外蒙皮而言,该 温度值随时间变化。

3) 导风罩表面边界条件
导风罩表面既存在与发动机表

面的热辐射,又存在与周围冷却气流的 对流换热。由于冷空气流入,导风罩表 面与冷空气之间存在强迫对流换热,对 流换热系数是根据流体在管内做强迫对 流换热的计算公式来确定的:

$$\alpha = N_{uf} \frac{\lambda_f}{D} \tag{1}$$

式(1)中, α 为对流换热系数, N_{uf} 为 流体的 N_u 数, λ_f 为流体的导热系数, D为 管道当量直径。对于导风罩表面与发动 机表面构成的环形通道而言, D等于发动 机外径与导风罩内径之差。由式(1)可 以看出,导风罩的对流系数既是X坐标的 函数,又是时间(飞行高度)的函数。

1.4 油箱耗油的模拟

由于该软件不具备单元死活功能, 采用改变燃油单元的物理参数方法来完 成对燃油消耗的模拟。在一定时刻某一

部分燃油被消耗,那么从该时刻起这一 部分燃油所对应的单元的热物理参数由 原值变为空气物理参数,从而实现对燃 油消耗的模拟。为此,对油箱燃油的有 限元网格按层划分。飞行初期是满油状 态,经过一段时间后,最上层燃油被消 耗掉,该层燃油就被稀薄空气所替代, 从这一时刻起,该层燃油的物理参数就 变成稀薄空气的物理参数。随着时间的 推移,燃油逐层被稀薄空气所替代,当 燃油消耗完后,所有燃油都变成稀薄空 气,油层编号如图3所示。

2 飞机整体油箱温度场计算

飞机的飞行剖面一般包括地面开 车、爬升、巡航和下滑4个阶段。沿整个 飞行剖面,在满油状态和耗油状态分别 对油箱进行了三维瞬态温度场计算。满

图5 燃油温度云图

图6 油箱各构件的温度历程曲线

图7 各层燃油温度历程曲线

油状态是指假设燃油在飞行过程中不 消耗,始终充满油箱的状态,耗油状 态是指燃油在飞行过程中不断消耗的 状态。另外,还对比了不同隔热垫对 油箱燃油温度的影响。图4~图7给出 了油箱典型构件的温度云图和时间历 程曲线。

1) 使用隔热垫G1情况下,燃油

最高温度为334K,位于燃油第9层, 使用隔热垫G2情况下,燃油最高温度 为348K,位于燃油第7、8层。根据燃 油安全使用温度判断,使用隔热垫G1 能保护飞行过程中燃油温度不超过安 全使用温度。

 2) 对比满油和耗油分析结果可 以看出,耗油工况燃油峰值温度比满 油工况高20%。因此,在对整体油箱 进行温度场分析时,必须考虑燃油的 消耗。

3小结

本文主要介绍了利用Msc Patran/ Nastran 2001热分析功能对飞机整体油 箱部段进行三维瞬态温度场建模与分析 的方法,包括模型的简化、框的热容等 效处理、各种复杂热边界条件的模拟以 及燃油消耗的模拟方法。对比分析了不 同隔热垫的热防护效果,以及燃油消耗 是否对分析结果产生影响。

AST

参考文献

[1]杨世铭. 传热学[M]. 北京:人民 教育出版社,1980.

[2] 任青梅,等. 离散结构三维瞬态 温度场分析[J]. 结构强度研究,2002(2).

[3] MSC Software Corporation.MSC Nastran 2001 Preference GuideVol.2 (Thermal Anslysis) [Z].2001.

[4] 陈焕星. MSC/NASTRAN用户 手册[Z].西安:中国飞机强度研究所, 1989,10.

作者简介

任青梅,高级工程师,主要从事 结构热强度研究。